Yıl: 2023 Cilt: 12 Sayı: 1 Sayfa Aralığı: 39 - 51 Metin Dili: Türkçe DOI: 10.28948/ngmuh.1173944 İndeks Tarihi: 19-01-2023

Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti

Öz:
İnsan yaşamını önceleyen sistemlerin yaygınlaşması toplumlara bütüncül fayda sağlamaktadır. Solunum yoluyla bulaşıcı hastalıklardan sakınmak için ağız-burun maskesi takmanın Covid-19 pandemisi ile zorunlu hâle geldiği gibi yapı inşaatında çalışan işçilerin inşaat alanında kafa kaskı takması zorunludur. İnşat alanlarında çalışan işçilerin kaskını takıp takmadığının kontrolünü göz ile yapmak yorucu ve hataya açıktır. Yapay zekâ tabanlı bilgisayar teknolojilerinin geliştiği bu çağda hayatımızı her anlamda kolaylaştıran sistemlerin varlığı ümit vaat etmektedir. Bu çalışmada görüntü verisinin anlamlandığı evrişimli sinir ağı (ESA) tabanlı derin öğrenme ile kask takma kontrolünün otomatik yapılması önerilmiştir ve YOLO V4, V5 ve Faster R-CNN modellerine uygulanan transfer öğrenme tekniği ile kısıtlı veri seti probleminin üstesinden gelinmiştir. Deneylerde transfer öğrenme uygulanmayan eğitimlere de yer verilerek yöntemin etkinliği incelenmiştir. Sonuçta transfer öğrenmeli YOLO V5 modelinin %98 f1 skor ile 6 farklı model eğitimi arasında en başarılı olduğu gözlemlenmiştir.
Anahtar Kelime: Kask tespiti Derin öğrenme Transfer öğrenme ESA Yapay zekâ

Helmet detectionon the construction site with transfer learning and without transfer learning deep networks

Öz:
The widespread use of systems that prioritize human life provides holistic benefits to societies. In order to avoid respiratory contagious diseases, wearing a mouth-nose mask has become mandatory with the Covid-19 pandemic, and workers working in building construction are required to wear a head helmet at the construction site. It is tiring and error-prone to visually check whether the workers working on the construction sites are wearing their helmets. In this age, where artificial intelligence-based computer technologies are developed, the existence of systems that make our lives easier in every sense is promising. In this study, it is proposed to make helmet wearing control automatic with convolutional neural network (CNN) based deep learning in which the image data is meaningful. The limited data set problem was overcome with the transfer learning technique applied to the YOLO V4, V5 and Faster R-CNN models. The effectiveness of the method was examined by including the trainings in which transfer learning was not applied in the experiments. As a result, it was observed that the YOLO V5 model with transfer learning was the most successful among 6 different model trainings with an f1 score of 98%.
Anahtar Kelime: Helmet detection Deep learning Transfer learning CNN Artificial intelligence

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] X. Chang and X. M. Liu, Fault treeanalysis of unreasonably wearing helmets for builders. Journal of Jilin Jianzhu University, 35, 67–71, 2018.
  • [2] L. Perezand and J. Wang, The effectiveness of data augmentation in image classification using deep learning. arXiv, 2017. https://doi.org/10.48550/AR XIV.1712.04621.
  • [3] V. Sorin, Y. Barash, E. Konen, E. Klang, Deep-learning natural language processing for oncological applications. The Lancet Oncology, 21(12), 1553-1556, 2020.
  • [4] H. S. Bae, H. J. Lee and S. G. Lee, Voice recognition based on adaptive MFCC and deep learning. IEEE 11th Conference on Industrial Electronics and Applications, pp. 1542-1546, Chengdu, China, 2006.
  • [5] Z. Yuan, Y. Lu, Z.Wang and Y. Xue, Droid-sec: deep learning in android malware detection. Proceedings of the 2014 ACM conference on SIGCOMM, pp. 371-372, New York, United States, 2014.
  • [6] Y. Sun, X. Wang, X. Tang, Hybrid deep learning for face verification. IEEE Trans. Pattern Anal. Mach. Intell., 38, 1489–1496, 2013. https://doi.org/10.1109/ ICCV.2 013.188.
  • [7] R. Vinayakumar, K. P. Soman and P. Poornachandran, Applying convolutional neural network for network intrusion detection. Proceedings of the 2017 International Conference on Advances in Computing, pp. 1222-1228, Udupi, India, 2017.
  • [8] K. Teja, L. Jens, S. Felix, H. Stefan, Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 24-49, 2021. https://doi .org/10.1 016/j.isprsjprs.2020.12.010.
  • [9] S. Moccia, L. Romeo, L. Migliorelli, E. Frontoni, P. Zingaretti, Supervised CNN strategies for optical image segmentation and classification in interventional medicine. Deep Learners and Deep Learner Descriptors for Medical Applications, 213-236, 2020. https://doi.org/10.1007/978-3-030-42750-4_8
  • [10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252, 2015. https://doi.org/10.1007/s11263-015-0816-y
  • [11] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. L. Zitnick, Microsoft COCO: Common Objects in Context. European Conference on Computer Vision, pp. 740-755, Zurich, Switzerland, 2014.
  • [12] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, A. Zisserman, The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303-338, 2010.
  • [13] A. Kelm, L. Laußat, A. Meins-Becker, D. Platz, M. J. Khazaee, A. M. Costin, M. Helmus, J. Teizer, Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites. Automation in Construction, 36, 38–52, 2013. https://doi.org/10.101 6/j.autcon .2013.08.009.
  • [14] S. Barro-Torres, T. M. Fernandez-Carames, H. J. Perez-Iglesias, C. J. Escudero, Real-time personal protective equipment monitoring system. Computer Communications, 36, pp. 42–50, 2012. https://doi.org /1 0.1016/j.autcon.2013.08.009.
  • [15] A. H. M. Rubaiyat, T. T. Toma, M. Kalantari-Khandani, S. A. Rahman, L. Chen, Y. Ye and C. S. Pan, Automatic detection of helmet uses for construction safety. Proceedings of the 2016 IEEE ACM International Conference on Web Intelligence Workshops, Omaha, USA, 2016.
  • [16] T. Malisiewicz, A. Gupta, and A. A. Efros, Ensemble of exemplar-svms for object detection and beyond. 2011 IEEE International Conference, 89-96, 2011.
  • [17] C. C. Liu, J. S. Liao, W. Y. Chen and J. H. Chen, The full motorcycle helmet detection scheme using canny detection, 18th IPPR Conf. On CVGIP, 2005.
  • [18] M. H. Wuand and J. Zhao, Automated visual helmet identification based on deep convolutional neural networks. Proceedings of the 13th International Symposium on Process Systems Engineering, San Diego, USA, 2018.
  • [19] Z. Fangbo, Z. Huailin and N. Zhen, Safety helmet detection based on YOLOv5. 2021 IEEE International Conference on Power Electronics, Computer Applications, pp. 6-11, 2021.
  • [20] W. Fan, J. Guoqing, G. Mingyu, H. E. Zhiwei and Y. Yuxiang, Helmet detection based on improved YOLO V3 deep model. 2019 IEEE 16th International Conference on Networking, Sensing and Control, pp. 363-368, 2019.
  • [21] L. Yange, W. Han, H. Zheng, H. Jianling, W. Weidong, Deep learning-based safety helmet detection in engineering management based on convolutional neural networks. Hindawi Advances in Civil Engineering, 2020.
  • [22] T. Choudhury, A. Aggarwal and R. Tomar, A deep learning approach to helmet detection for road safety. NISCAIR-CSIR, India, 2020.
  • [23] D. Madhuchhanda, B. Oishila and C. Sanjay, Automated helmet detection for multiple motorcycle riders using CNN. 2019 IEEE Conference on Information and Communication Technology, pp. 1-4, IEEE, 2019.
  • [24] J. Wei, X. Shiquan, L. Zhen, Z. Yang, M. Hai, L. Shujie, Y. Ye, Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector. IET Image Processing, 15(14), 3623-3637, 2021. https://doi.org/10.1049/ipr2.12295.
  • [25] T. Shilei, L. Gonglin, J. Ziqiang and H. Li, Improved YOLOv5 network model and application in safety helmet detection. 2021 IEEE International Conference on Intelligence and Safety for Robotics, pp. 330-333, IEEE, 2021.
  • [26] G. Rui, M. Yixuan and H. Wanhong, An improved helmet detection method for YOLOv3 on an unbalanced dataset. 2021 3rd International Conference on Advances in Computer Technology, Information Science and Communication, pp. 328- 332, IEEE, 2021.
  • [27] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. L. Zitnick, Microsoft COCO: Common Objects in Context. European Conference on Computer Vision, pp. 740-755, Zurich, Switzerland, 2014.
  • [28] Z. Jiang, L. Zhao, S. Li and Y. Jia, Real-time object detection method for embedded devices. computer vision and pattern recognition, 2020.
  • [29] C. Kumar and R. Punitha, YOLOv3 and yolov4: Multiple object detection for surveillance applications. 2020 Third international conference on smart systems and inventive technology, pp. 1316-1321, IEEE, 2020.
  • [30] L. Yanfen, W. Hanxiang, L. M. Dang, T. N. Nguyen, D. Han, A. Lee, I. Jang, H. Moon, A deep learning-based hybrid framework for object detection and recognition in autonomous driving. IEEE Access 8, 194228-194239, 2020.
  • [31] T. Liu, B. Pang, L. Zhang, W. Yang, X. Sun, Sea surface object detection algorithm based on YOLO v4 fused with reverse depth wise separable convolution (RDSC) for USV. Journal of Marine Science and Engineering, 9(7), 753. https://doi.org/10.3390/jmse 9070753.
  • [32] A. M. Roy, R. Boseand, J. Bhaduri, A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Computing and Applications, 34(5), 3895-3921, 2022. https://doi.org/ 10.48550/arXiv.2111.00298.
  • [33] J. Yu and W. Zhang, Face mask wearing detection algorithm based on improved YOLO-v4, sensors. Sensors, 21(9), 3263, 2021. https://doi.org/10.3390/ s21093263.
  • [34] S. Li, Y. Li, Y. Li, M. Liand and X. Xu, YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection. IEEE Access, 9, 141861-141875, 2021.
  • [35] D. Wu, S. Lv, M. Jiang, H. Song, Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Computers and Electronics in Agriculture, 178, 105742. https://doi.org/10.1016/j.compag.2020.10 5742.
  • [36] J. Yuand and H. Choi, YOLO MDE: Object detection with monocular depth estimation. Electronics, 11(1), 76, 2021. https:// doi.org/10.3390/electronics110100 76.
  • [37] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507. doi: 10.1126/science.1127647.
  • [38] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11)i 2278-2374, 1998.
  • [39] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11)i 2278-2374, 1998.
  • [40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 115(3), 211-252, 2015. https://doi.org/10.1007/s11263-015-0816-y
  • [41] CS230 Deep Learning, Class for learners. https://cs230.stanford.edu/, Accessed 03 November 2022.
  • [42] Make ML, Hard Hat Dataset. https://makeml.app /datasets/hard-hat-workers, Accessed 15 April 2022.
  • [43] J. Grum, Book review: pattern recognition and neural networks by B.D. Ripley. International Journal of Microstructure and Materials Properties, 4(1), 146-147, 2009. https://doi.org/10.1504/IJMMP.2009.0284 41.
  • [44] make-sense, a labelling tool. https://github.com/Skal skiP/make-sense, Accessed 13 March 2022.
  • [45] glenn-jocher, YOLOv5 Focus Layer, Explanation of Focus Layer. https://git hub.com/ultralytics/yolov5 /discussions/3181m1, Accessed 22 February 2022.
  • [46] Mseddi, W. Souidine, M. A. Sedrine and R. Attia, YOLOv5 based visual localization for autonomous vehicles, Proceedings of the 2021 29th European Signal Processing Conference, Dublin, Ireland, 2021.
  • [47] G. Yang, W. Feng, J. Jin, Q. Lei, X. Li, G. Guiand and W. Wang, Face mask recognition system with YOLO V5 based on image recognition. 2020 IEEE 6th International Conference on Computerand Communications, pp. 1398-1404, IEEE, 2020.
  • [48] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J. Schmidhuber, LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232, 2017.
  • [49] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. MIT Press, Cambridge, 2016.
  • [50] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning. Springer-Verlag, Vol 4. No 4., New York, 2007.
  • [51] K. Murphy, Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, 2012.
  • [52] A. Krizhevsky, I. Sutskeverand, G. E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst, 60(6), 84-90, 2017. https://doi.org/10.1145 /3065386.
  • [53] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization. arXiv, 2014. https://doi.org/10 .48550/arXiv.14 12.6980.
  • [54] P. D. Lima and K. Marfurt, Convolutional neural network for remote-sensing scene classification: transfer learning analysis. Remote Sensing, 12(1), 86, 2019. https://doi.org/10.3390/rs12010086.
  • [55] C. Szegedy, W. Liu, Y. Jia et al, Going deeper with convolutions. arXiv, 2014.
  • [56] K. Haoarchive, Training a single AI model can emit as much carbon as fivears in their lifetimes. https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon -as-five-cars-in-their-lifetimes/, Accessed 8 March 2022.
  • [57] L. Torrey and J. Shavlik, Transfer Learning Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI Publishing, Hershey, 2009.
  • [58] Y. Gao, Y. Ruan, C. Fangand and S. Yin, Deep learning and transfer learning models of energy consumption forecasting for a building with poor information data. Energy and Buildings, 223, 110156, 2020. https://doi.org/10.1016/j.en build.2020.110156.
  • [59] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang and C. Liu, A survey on deep transfer learning. International conference on artificial neural networks, pp. 270-279 Springer, Cham, 2018. https://doi.org/10.48550/arX iv.1808.01974.
  • [60] B. Koçer, Transfer öğrenmede yeni yaklaşımlar. Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Türkiye, 2012.
  • [61] Transfer learning & fine-tuning, explanation of layer-base fine-tune and transfer learn methods https://keras.io/guides/transfer-learning/, Accessed 27 December 2021.
  • [62] F. İ. Eyiokur, Deep convolutional neural network based unconstrained ear recognition. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 2018.
  • [63] M. J. Afridi, A. Ross, E. M. Shapiro, On automated source selection for transfer learning in convolutional neural networks. Pattern recognition, 73, 65-75, 2018. https://doi .org/10.1016/j.patcog.2017.07.019.
  • [64] M. Tharani, N. Khurshid, M. Taj, Unsupervised Deep Features for Remote Sensing Image Matching via Discriminator Network. Remote Sensing Image Retrieval, 2018.
  • [65] S. J. Pan and Q. Yang, A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359, 2009.
  • [66] M. Gong, H. Yang, P. Zhang, Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 212-225, 2017.
  • [67] L. Hughes, M. Schmitt, L. Mou, Y. Wang, X. Zhu, Identifying Corresponding Patches in SAR and Optical Images With a Pseudo-Siamese CNN. IEEE Geoscience and Remote Sensing Letters, 15(5), 784-788, 2018.
  • [68] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár and C. L. Zitnick, Microsoft COCO: Common Objects in Context. European Conference on Computer Vision, pp. 740-755, Zurich, Switzerland, 2014.
  • [69] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, A. Zisserman, The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303-338, 2010
  • [70] J. Deng, W. Dong, R. Socher, L. Li, K. Liand L. Fei-Fei. IEEE ComputerVisionandPatternRecognition (CVPR) (2009)
  • [71] S J. Pan and Q. Yang, A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359, 2009.
  • [72] S. Wang, L. Niuand, N. Li, Research on image recognition of insulators based on YOLO algorithm, 2018 international conference on power system technology (POWERCON), IEEE, 2018.
  • [73] M. Kartal, O. Duman, Ship detection from optical satellite images with deep learning. In 2019 9th International Conference on RecentAdvances in Space Technologies (RAST), 2019.
  • [74] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L, Antiga, A, Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems, 32, 2019. https://doi.org/10.48550/arXiv.1912.01703.
APA Türkdamar M, Taşyürek M, Ozturk C (2023). Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. , 39 - 51. 10.28948/ngmuh.1173944
Chicago Türkdamar Mehmet Uğur,Taşyürek Murat,Ozturk Celal Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. (2023): 39 - 51. 10.28948/ngmuh.1173944
MLA Türkdamar Mehmet Uğur,Taşyürek Murat,Ozturk Celal Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. , 2023, ss.39 - 51. 10.28948/ngmuh.1173944
AMA Türkdamar M,Taşyürek M,Ozturk C Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. . 2023; 39 - 51. 10.28948/ngmuh.1173944
Vancouver Türkdamar M,Taşyürek M,Ozturk C Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. . 2023; 39 - 51. 10.28948/ngmuh.1173944
IEEE Türkdamar M,Taşyürek M,Ozturk C "Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti." , ss.39 - 51, 2023. 10.28948/ngmuh.1173944
ISNAD Türkdamar, Mehmet Uğur vd. "Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti". (2023), 39-51. https://doi.org/10.28948/ngmuh.1173944
APA Türkdamar M, Taşyürek M, Ozturk C (2023). Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 39 - 51. 10.28948/ngmuh.1173944
Chicago Türkdamar Mehmet Uğur,Taşyürek Murat,Ozturk Celal Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no.1 (2023): 39 - 51. 10.28948/ngmuh.1173944
MLA Türkdamar Mehmet Uğur,Taşyürek Murat,Ozturk Celal Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.12, no.1, 2023, ss.39 - 51. 10.28948/ngmuh.1173944
AMA Türkdamar M,Taşyürek M,Ozturk C Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2023; 12(1): 39 - 51. 10.28948/ngmuh.1173944
Vancouver Türkdamar M,Taşyürek M,Ozturk C Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2023; 12(1): 39 - 51. 10.28948/ngmuh.1173944
IEEE Türkdamar M,Taşyürek M,Ozturk C "Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti." Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12, ss.39 - 51, 2023. 10.28948/ngmuh.1173944
ISNAD Türkdamar, Mehmet Uğur vd. "Transfer öğrenmeli ve transfer öğrenmesiz derin ağlar ile inşaat alanında kask tespiti". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (2023), 39-51. https://doi.org/10.28948/ngmuh.1173944