Yıl: 2023 Cilt: 12 Sayı: 1 Sayfa Aralığı: 256 - 264 Metin Dili: Türkçe DOI: 10.28948/ngmuh.1187363 İndeks Tarihi: 19-01-2023

Yeraltı suyunun spektral davranışa etkisi

Öz:
Kuru ve doygun durumda olan zeminlerin çevrimsel yükleme esnasında göstereceği zemin davranışı farklıdır. Özellikle sismik yükler altında doygun olan zeminlerde meydana gelen tekrarlı gerilmeler sonucunda, zeminde sıvılaşma, büyütme ve taşıma gücü kaybı gibi zemin problemlerinden dolayı hasarlar meydana gelebilmektedir. Dinamik yüklerin etkisiyle oluşacak kayma birim şekil değişme seviyeleri de farklılık gösterecek ve sönümlenme seviyeleri de bu durumdan etkilenecektir. Bu çalışmada aynı bölgede yer alan yeraltı suyu bulunmayan 2 sondaj ile yüzeye yakın yeraltı suyu seviyesine sahip doygun zemin tabakalarından oluşan 2 sondaj için bir boyutlu eşdeğer doğrusal ve doğrusal olmayan analizler yapılmış ve su seviyesinin etkisi tartışılmıştır. Çalışmada Eskişehir şehir merkezinde alüvyon zemin üzerinde yer alan 4 sondaj için 11 farklı istasyona ait gerçek ivme kayıt verileri kullanılmıştır. Kayma dalgası hızının etkisinin görülmemesi için kayma dalgası hızları yakın olan sondajlar tercih edilmiştir. Analizler hem frekans (eşdeğer doğrusal) hem de zaman tanım alanında (doğrusal olmayan) çözümler yapabilen Deepsoil 7.0 yazılımında yapılmıştır. Analizler sonucunda yeraltı suyu bulunan sondajlarda daha büyük spektral parametreler elde edilmiştir.
Anahtar Kelime: Yeraltı suyu Zemin özellikleri Bir boyutlu eşdeğer doğrusal analiz Bir boyutlu doğrusal olmayan analiz

Effect of groundwater on spectral behavior

Öz:
The behavior of dry and saturated soils during cyclic loading is different. As a result of cyclic stresses that occur on soils, especially saturated soils under seismic loads, damage caused by ground problems such as liquefaction, amplification and loss of bearing capacity on the soil is expected. During stresses that generated under the effect of dynamic loads, the damping ratio levels may change due to the soil properties (dry sand or saturated sand). In this case, soil behavior analysis is performed in order to determine the amplification-liquefaction risk resulting from high strains. In this study, one-dimensional equivalent linear and non-linear analyzes were performed for two boreholes without groundwater and two boreholes consisting of saturated soil layers with near-surface groundwater levels in the same region. The soil profiles were excited by using real acceleration recording data of 11 different stations for 4 boreholes located on the alluvial ground in Eskişehir city center. For the study, boreholes with the same shear wave velocities were preferred. Analyzes were performed in Deepsoil 7.0 software, which can perform both frequency (equivalent linear) and time history (non-linear) solutions. As a result of the analyzes, larger spectral parameters were obtained in boreholes with groundwater.
Anahtar Kelime: Groundwater Soil properties One- dimensional equivalent linear analysis One-dimensional nonlinear analysis

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] P. Y. Bard PY, Efects of surface geology on ground motion: recent results and remaining issues. In: Duma, editor. 10th European conference on earthquake engineering. Rotterdam: Balkema p. 305–23, 1995.
  • [2] G. A. Athanasopoulos, P. C. Pelekis, e. A. Leonidou, Efects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dyn Earthq Eng 18(1999):135– 149, 1999. https://doi.org/10.1016/S0267-7261(98)00041-4
  • [3] A. Roca, C. S. Oliveira, A. Ansal, S. Figueras S, Local site efects and microzonation, in assessing and managing earthquake risk, edited by Oliveira CS, Roca A, Goula X Springer, 67–89, 2008.
  • [4] Y. M. A. Hashash, C. Phillips, D. R. Groholski, Recent advances in non-linear site response analysis. 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, May 24-29, San Diego, Paper no. OSP 4, 2010.
  • [5] M. K. Akın, T. Topal, S. L. Kramer, A newly developed seismic microzonation model of Erbaa (Tokat, Turkey) located on seismically active eastern segment of the north Anatolian fault zone (NAFZ). Nat Hazards 65:1411–1442, 2013. https://doi.org/10.1007/-s11069-012-0420-1
  • [6] B. Sonmezer, S. Bas, S Isik, O Akbas, Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale. Geomech Eng 16 (4):435–448, 2018. https://doi.org/10.12989/gae.2018. 16.4.435
  • [7] E. Garini, G. Gazetas, K. Ziotopoulou, Inelastic soil amplification in three sites during the Tokachi-oki MJMA 8.0 earthquake. Soil Dyn Earthq Eng 110:300–317, 2018. https://doi.org/10.1016/j.soildyn.2018. 01.017
  • [8] E. Civelekler, K. B. Afacan, D. V. Okur, Eşdeğer doğrusal ve doğrusal olmayan yaklaşımlara göre sismik yük etkisindeki zeminlerde davranış analizi. ESOGÜ Müh Mim Fak Derg. 29(2), 158 – 171, 2021. https://doi.org/10.31796/ogummf.839703
  • [9] M. Vucetic and R. Dobry, Effect of soil plasticity on cyclic response. Journal of Geotechnical Engineering, ASCE, 117 (1): 89-107, 1991.
  • [10] C. Phillips and Y. M. Hashash, Damping formulation for nonlinear 1D site response analyses. Soil Dynamics and Earthquake Engineering, 29(7), 1143–1158, 2009. https://doi.org/10.1016/j.soildyn.2009.01.004
  • [11] P. Arduino and S. L. Kramer, Site response. In: CEE 526 Geotechnical Earthquake Engineering lecture notes, University of Washington, Seattle, WA-USA, 2009.
  • [12] P. E. PEER, PEER ground motion database. Berkeley, 2006. http://peer.berkeley.edu/smcat/
  • [13] Y. M. A. Hashash, M. I. Musgrove, J. A. Harmon, D. R. Groholski, C. A. Phillips, D. Park, DEEPSOIL 6.1, User Manual, Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign, 2016.
  • [14] E. Civelekler and E. Pekkan, The application of GIS in visualization of geotechnical data (SPT-Soil Properties): a case study in Eskisehir-Tepebaşı, Turkey. International Journal of Engineering and Geosciences, 7 (3), 302-313, 2022. https://doi.org/ 10.26833/ijeg.980611
  • [15] E. Civelekler, D. V. Okur, K. B. Afacan, A study of the local site effects on the ground response for the city of Eskişehir Turkey. Bull Eng Geol Env, 2021. https://doi.org/10.1007/S10064-021-02285-4
  • [16] Y. Güney, B. Ecevıtoğlu, E. Pekkan, U. Avdan, M. Tün, O. Kaplan, S. Mutlu, E. Akdenız, ve ...; Eskişehir Yerleşim Yerinde, CBS Teknikleri Kullanılarak Geoteknik, Yapı ve Jeofizik Bilgi Sisteminin Oluşturulması. Anadolu Üniversitesi Bilimsel Araştırma Projesi Proje No:080240, 2013.
  • [17] S. L. Kramer, Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River, New Jersey. 653 pp., 1996.
  • [18] F. Menq, Dynamic properties of sandy and gravelly soils. Ph.D. Dissertation. University of Texas, Austin, TX, 2003.
  • [19] M. Darendeli, Development of a new family of normalized modulus reduction and material damping curves. Ph.D. Dissertation, University of Texas, Austin, TX, 2001.
  • [20] C. Bolisetti, A. S. Whittaker, H. B. Mason, I. Almufti, M. Willford, Equivalent linear and nonlinear siteresponse analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 275, 107–121, 2014. https://doi.org/ 10.1016/j.nucengdes.2014.04.033
  • [21] J. P. Pruiksma, Nonlinear and Equivalent Linear Site Response Analysis for The Groningen Area, TNO Report, TNO 2016 R10460, 1-30, 2016.
  • [22] P. Akdoğan, Dynamic soil amplification in saturated soil profiles using effective stress based nonlinear methods, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, 2019.
APA Civelekler E, Afacan K (2023). Yeraltı suyunun spektral davranışa etkisi. , 256 - 264. 10.28948/ngmuh.1187363
Chicago Civelekler Ebru,Afacan Kamil Bekir Yeraltı suyunun spektral davranışa etkisi. (2023): 256 - 264. 10.28948/ngmuh.1187363
MLA Civelekler Ebru,Afacan Kamil Bekir Yeraltı suyunun spektral davranışa etkisi. , 2023, ss.256 - 264. 10.28948/ngmuh.1187363
AMA Civelekler E,Afacan K Yeraltı suyunun spektral davranışa etkisi. . 2023; 256 - 264. 10.28948/ngmuh.1187363
Vancouver Civelekler E,Afacan K Yeraltı suyunun spektral davranışa etkisi. . 2023; 256 - 264. 10.28948/ngmuh.1187363
IEEE Civelekler E,Afacan K "Yeraltı suyunun spektral davranışa etkisi." , ss.256 - 264, 2023. 10.28948/ngmuh.1187363
ISNAD Civelekler, Ebru - Afacan, Kamil Bekir. "Yeraltı suyunun spektral davranışa etkisi". (2023), 256-264. https://doi.org/10.28948/ngmuh.1187363
APA Civelekler E, Afacan K (2023). Yeraltı suyunun spektral davranışa etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 256 - 264. 10.28948/ngmuh.1187363
Chicago Civelekler Ebru,Afacan Kamil Bekir Yeraltı suyunun spektral davranışa etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no.1 (2023): 256 - 264. 10.28948/ngmuh.1187363
MLA Civelekler Ebru,Afacan Kamil Bekir Yeraltı suyunun spektral davranışa etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.12, no.1, 2023, ss.256 - 264. 10.28948/ngmuh.1187363
AMA Civelekler E,Afacan K Yeraltı suyunun spektral davranışa etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2023; 12(1): 256 - 264. 10.28948/ngmuh.1187363
Vancouver Civelekler E,Afacan K Yeraltı suyunun spektral davranışa etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2023; 12(1): 256 - 264. 10.28948/ngmuh.1187363
IEEE Civelekler E,Afacan K "Yeraltı suyunun spektral davranışa etkisi." Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12, ss.256 - 264, 2023. 10.28948/ngmuh.1187363
ISNAD Civelekler, Ebru - Afacan, Kamil Bekir. "Yeraltı suyunun spektral davranışa etkisi". Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (2023), 256-264. https://doi.org/10.28948/ngmuh.1187363