Yıl: 2022 Cilt: 4 Sayı: 2 Sayfa Aralığı: 88 - 93 Metin Dili: İngilizce DOI: 10.51435/turkjac.1136876 İndeks Tarihi: 27-01-2023

Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode

Öz:
Electrochemical analysis of the expectorant drug guaifenesin was performed on boron doped diamond electrode by cyclic voltammetry, differential pulse voltammetry, and square wave voltammetry techniques. The results of cyclic voltammetry studies indicated that the reaction mechanism of guaifenesin in the anodic direction was irreversible, and diffusion controlled. The linearity ranges of the peak currents versus guaifenesin concentration were between 0.4 and 100 μM with a detection limit of 1.47 nM for differential pulse voltammetry and between 0.8 and 100 μM with a detection limit of 2.92 nM for square wave voltammetry. Quantitative analysis of guaifenesin from the pharmaceuticals was performed using the proposed methods without any pre-separation. Sensitive voltammetric methods with good recovery, high sensitivity and accuracy were developed for the electroanalytical analysis of guaifenesin.
Anahtar Kelime: Boron doped diamond electrode guaifenesin pharmaceuticals validation voltammetry

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] W.W. Storms, J.E. Miller, Daily use of guaifenesin (Mucinex) in a patient with chronic bronchitis and pathologic mucus hypersecretion: A case report, Respiratory Med Case Rep, 23, 2018, 156–157.
  • [2] H.H. Albrecht, P.V. Dicpinigaitis, E.P. Guenin, Role of guaifenesin in the management of chronic bronchitis and upper respiratory tract infections, Multidiscip Respir Med, 12, 2017, 31.
  • [3] J.A. Ohar, J.F. Donohue, S. Spangenthal, The role of guaifenesin in the management of chronic mucus hypersecretion associated with stable chronic bronchitis: A comprehensive review, Chronic Obstr Pulm Dis, 6, 2019, 341–349.
  • [4] N.A. El-Maali, Voltammetric analysis of drugs, Bioelectrochemistry, 64, 2004, 99–107.
  • [5] Martindale. Guaifenesin. In Martindale: The Complete Drug Reference. Edited by S. Sweetman, 2016, London, The Pharmaceutical Press.
  • [6] A.A. Bankar, S.R. Lokhande, R. Sawant, and A.R. Bhagat, Spectrophotometric estimation of guaifenesin and salbutamol in pure and tablet dosage form by using different methods, Der Pharma Chemica, 5, 2013, 92–97.
  • [7] N.C. Patel, D.B. Patel, P.K. Chaudhari, Spectrophotometric estimation of ambroxol hydrochloride, guaifenesin and levosalbutamol sulphatein syrup, AJRC, 6, 2013, 407–414.
  • [8] H. Patil, S. Sonawane, P. Gide, Determination of guaifenesin from spiked human plasma using RP-HPLC with UV detection, J Anal Chem, 69, 2014, 390–394.
  • [9] H.M. Maher, S.M. Al-Taweel, M.M. Alshehri, N.Z. Alzoman, Novel stereoselective high-performance liquid chromatographic method for simultaneous determination of guaifenesin and ketorolac enantiomers in human plasma, Chirality, 26, 2014, 629– 639.
  • [10] O.A. Saleh, A.M. Yehia, A.A.-E.S. El-Azzouny, H.Y. Aboul-Enein, A validated chromatographic method for simultaneous determination of guaifenesin enantiomers and ambroxol HCl in pharmaceutical formulation, RSC Adv, 5, 2015, 93749–93756.
  • [11] I. Tapsobab, J.E. Belgaieda, K. Boujlel, Voltammetric assay of guaifenesin in pharmaceutical formulation, J Pharm Biomed Anal, 38, 2005, 162–165.
  • [12] M. Hadi, Electrochemical determination of guaifenesin in a pharmaceutical formulation and human urine based on an anodized nanocrystalline graphite-like pyrolytic carbon film electrode, Anal Methods, 7, 2015, 8778–8785.
  • [13] M.B. Gholivand, M. Khodadadian, Simultaneous voltammetric determination of theophylline and guaifenesin using a multiwalled carbon nanotube-ionic liquid modified glassy carbon electrode, Electroanalysis, 26, 2014, 1975–1983.
  • [14] M.B. Gholivand, A. Azadbakht, A. Pashabadi, An electrochemical sensor based on carbon nanotube bimetallic Au-Pt inorganic- organic nanofiber hybrid nanocomposite electrode applied for detection of guaifenesin, Electroanalysis, 23, 2011, 2771–2779.
  • [15] M.J. Arcos, M. Alonso, M.C. Ortiz, Genetic-algorithm-based potential selection in multivariant voltammetric determination of indomethacin and acemethacin by partial least squares, Electrochim Acta, 43, 1988, 479–485.
  • [16] J.H.T. Luong, K.B. Maleb, J.D. Glennon, Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications, Analyst, 134, 2009, 1965–1979.
  • [17] S.J. Cobb, Z.J. Ayres, J.V. Macpherson, Boron doped diamond: A designer electrode material for the twenty-first century, Annu Rev Anal Chem, 11, 2018, 463–484.
  • [18] P. Talay Pınar, Electrochemical behaviour of ofloxacin in pharmaceutical and biological samples using a boron-doped diamond electrode in using anionic surfactant, GU J Sci, 31, 2018, 66–80.
  • [19] Ö. Selçuk, C. Erkmen, B. Bozal-Palabıyık, B. Uslu, Electroanalytical investigation and simultaneous determination of etodolac and thiocolchicoside at a non-modified glassy carbon electrode in anionic surfactant media, Electroanalysis, 33, 2021, 1290–1298.
  • [20] J. Wang, Electroanalytical Techniques in Clinical Chemistry and Laboratory Medicine,1988, New York: VCH Publishers.
  • [21] P.T. Kissinger, and W.R. Heineman, Laboratory Techniques in Electroanalytical Chemistry (2nd edition), 1984, New York, Markel Dekker.
  • [22] S. Shi-Gang, S. Hong-Mei, S. Han-Wen, Mechanism and kinetics of guaifenesin oxidation by bis(hydrogenperiodato)argentate(III) complex anion, Acta Phys -Chim Sin, 23, 2007, 409–413.
  • [23] Puttaswamy, A. Sukhdev, Oxidation of mephenesin and guaifenesin with chloramine-B in hydrochloric acid medium: Design of kinetic model, Ind J Chem, 48A, 2009, 339–345.
  • [24] E. Laviron, L. Roullier, C. Degrand. A multilayer model for the study of space distributed redox modified redox modified electrodes: Part II. Theory and application of linear potential sweep voltammetry for a simple reaction, J Electroanal Chem Interfacial Electrochem, 112, 1980, 11–23.
  • [25] D.K Gosser, Jr., Cyclic Voltammetry, Simulation and Analysis of Reaction Mechanisms, 1993, New York, VCH Publishers, pp. 43, 97–99.
  • [26] I.R. Berry, and D. Harpaz. Validation of Active Pharmaceutical Ingredients (2nd edition), 2001, Washington, CRC Press.
  • [27] F. Ağın, Voltammetric determination of guaifenesin in pharmaceuticals and urine samples based on poly(bromocresol purple) modified glassy carbon electrode, Curr Pharm Anal, 16, 2020, 633–639.
  • [28] H. Işık, G. Öztürk, F. Ağın, D. Kul, Electroanalytical analysis of guaifenesin on poly(acridine orange) modified glassy carbon electrode and its determination in pharmaceuticals and serum samples, Comb Chem High T Scr, 24, 2021, 376–385.
APA AGIN F, Öztürk G, KUL D (2022). Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. , 88 - 93. 10.51435/turkjac.1136876
Chicago AGIN FATMA,Öztürk Gökçe,KUL Dilek Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. (2022): 88 - 93. 10.51435/turkjac.1136876
MLA AGIN FATMA,Öztürk Gökçe,KUL Dilek Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. , 2022, ss.88 - 93. 10.51435/turkjac.1136876
AMA AGIN F,Öztürk G,KUL D Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. . 2022; 88 - 93. 10.51435/turkjac.1136876
Vancouver AGIN F,Öztürk G,KUL D Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. . 2022; 88 - 93. 10.51435/turkjac.1136876
IEEE AGIN F,Öztürk G,KUL D "Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode." , ss.88 - 93, 2022. 10.51435/turkjac.1136876
ISNAD AGIN, FATMA vd. "Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode". (2022), 88-93. https://doi.org/10.51435/turkjac.1136876
APA AGIN F, Öztürk G, KUL D (2022). Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. Turkish Journal of Analytical Chemistry (Online), 4(2), 88 - 93. 10.51435/turkjac.1136876
Chicago AGIN FATMA,Öztürk Gökçe,KUL Dilek Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. Turkish Journal of Analytical Chemistry (Online) 4, no.2 (2022): 88 - 93. 10.51435/turkjac.1136876
MLA AGIN FATMA,Öztürk Gökçe,KUL Dilek Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. Turkish Journal of Analytical Chemistry (Online), vol.4, no.2, 2022, ss.88 - 93. 10.51435/turkjac.1136876
AMA AGIN F,Öztürk G,KUL D Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. Turkish Journal of Analytical Chemistry (Online). 2022; 4(2): 88 - 93. 10.51435/turkjac.1136876
Vancouver AGIN F,Öztürk G,KUL D Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode. Turkish Journal of Analytical Chemistry (Online). 2022; 4(2): 88 - 93. 10.51435/turkjac.1136876
IEEE AGIN F,Öztürk G,KUL D "Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode." Turkish Journal of Analytical Chemistry (Online), 4, ss.88 - 93, 2022. 10.51435/turkjac.1136876
ISNAD AGIN, FATMA vd. "Electroanalytical Analysis of Guaifenesin from Pharmaceuticals on Boron Doped Diamond Electrode". Turkish Journal of Analytical Chemistry (Online) 4/2 (2022), 88-93. https://doi.org/10.51435/turkjac.1136876