Yıl: 2023 Cilt: 3 Sayı: 1 Sayfa Aralığı: 39 - 52 Metin Dili: Türkçe DOI: 10.29228/JIENS.66787 İndeks Tarihi: 04-05-2023

Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri

Öz:
Polieterimid (PEI) membranlar solüsyon döküm yöntemi ile üretilmektedir. Döküm çözücüsü olarak N-metil pirolidon (NMP) kullanıldı. Hazırlanan membranların gaz ayırma performansı üzerindeki etkilerini araştırmak için polimer çözeltisine dumanlı silika nanopartikülü ve polietilen glikol (PEG; Mw=6000 g/mol) ilave edildi. PEI membranları, Fourier Transform Infrared Spektroskopisi (FTIR) ve Diferansiyel Tarama Kalorimetrisi (DSC) ile analiz edildi. Membran morfolojilerini incelemek amacıyla, membranların enine kesit alanlarının morfolojisi, Taramalı Elektron Mikroskobu (SEM) ile izlendi. PEI esaslı membranların gaz ayırma performansı, CO2 ve CH4'ün gaz geçirgenliği ölçülerek tahmin edildi. SEM analizine göre, saf PEI membranı yoğun simetrik bir yapıya sahipti. PEI membran yapısına dumanlı silika nanopartiküllerin eklenmesi, yapıda parmak benzeri boşluklara neden oldu. Dumanlı silika nanopartikül miktarı ağırlıkça %1'den %15'e çıkarıldığında süngerimsi yoğun asimetrik membran yapısının oluştuğu SEM ile izlendi. Sonuçlara göre PEI-0-15 en iyi CO2/CH4 seçiciliğini göstermiştir (α=36.483 ve PCO2=0.6967 Barrer).
Anahtar Kelime: CO2/CH4 ayırma Dumanlı silika nanopartikülleri Polieterimid Membran

Preparation and gas permeability properties of polyetherimide based nanocomposite membranes with fumed silica nanoparticles

Öz:
Polyetherimide membranes (PEIs) are made by solution-casting method. As a casting solvent, N-methyl pyrrolidone (NMP) was used for membrane solutions. For the purpose of investigating the effects of the membranes on gas separation efficiency, fumed silica nanoparticles and poly(ethylene glycol) (Mw=6000 g/mol) were added to the polymer solution. Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) were used to analyze PEI membranes. To investigate the membrane morphologies, scanning electron microscopy (SEM) was used to monitor the morphology of the membrane cross-sections. CO2 and CH4 gas permeability were measured to evaluate the performance of PEI-based membranes for gas separation. In SEM analysis, pure PEI membrane had dense, symmetrical structures. As a result of adding fumed silica nanoparticles to PEI membrane structure, finger-like voids were formed. An increase in fumed silica from 1% to 15% by weight led to a sponge-like dense asymmetric membrane structure observed by SEM. In the experiments, PEI-0-15 demonstrated the highest CO2/CH4 selectivity (α=36.483 and PCO2=0.6967 Barrer).
Anahtar Kelime: CO2/CH4 separation Fumed silica nanoparticules Polyether imide Membrane

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Baena-Moreno FM, le Saché E, Pastor-Pérez L, Reina TR (2020) Membrane-based technologies for biogas upgrading: a review. Environ Chem Lett. 18:1649–1658. https://doi.org/10.1007/s10311-020-01036-3
  • [2] Kujawski W, Li G, Van der Bruggen B, Pedišius N, Tonkonogij J, Tonkonogovas A, Stankevičius A, Šereika J, Jullok N, Kujawa J (2020) Preparation and characterization of polyphenylsulfone (Ppsu) membranes for biogas upgrading. Materials 13:1–22. https://doi.org/10.3390/ma13122847
  • [3] Lin W, Xu J, Zhang L, Gu A (2017) Synthetic natural gas (SNG) liquefaction processes with hydrogen separation. Int J Hydrogen Energy https://doi.org/10.1016/j.ijhydene.2017.04.141
  • [4] Chawla M, Saulat H, Masood Khan M, Mahmood Khan M, Rafiq S, Cheng L, Iqbal T, Rasheed MI, Farooq MZ, Saeed M, Ahmad NM, Khan Niazi MB, Saqib S, Jamil F, Mukhtar A, Muhammad N (2020) Membranes for CO2 /CH4 and CO2/N2 Gas Separation. Chem Eng Technol. 43:184–199. https://doi.org/10.1002/CEAT.201900375
  • [5] Norahim N, Yaisanga P, Faungnawakij K, Charinpanitkul T, Klaysom C (2018) Recent Membrane Developments for CO2 Separation and Capture. Chem Eng Technol. 41:211–223. https://doi.org/10.1002/CEAT.201700406
  • [6] Scholes C, Kentish S, Stevens G, Scholes CA, Kentish SE, Stevens GW (2008) Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications Hydrocarbon removal from Soil and Groundwater in Cold Regions. View project GOS production View project Carbon Dioxide Separation through Polymeric Membrane Systems for Flue Gas Applications, Recent Patents on Chemical Engineering. 1:52–66. https://doi.org/10.2174/1874478810801010052
  • [7] Mubashir M, Yeong YF, Lau KK, Chew TL (2019) Effect of spinning conditions on the fabrication of cellulose acetate hollow fiber membrane for CO2 separation from N2 and CH4. Polym Test. 73:1–11. https://doi.org/10.1016/J.POLYMERTESTING.2018.10.036
  • [8] Sundell BJ, Harrigan DJ, Hayden SC, Vaughn JT, Guzan KA, Lawrence JA, Ostraat ML (2019) Improved gas transport properties of cellulose acetate via sub-Tg acid-catalyzed silanation. J Memb Sci. 573:448– 454. https://doi.org/10.1016/J.MEMSCI.2018.11.077
  • [9] Tanvidkar P, Jonnalagedda A, Kuncharam BVR (2023) Fabrication and testing of mixed matrix membranes of UiO-66-NH2 in cellulose acetate for CO2 separation from model biogas. J Appl Polym Sci. 140, e53264. https://doi.org/10.1002/APP.53264
  • [10] Moghadassi AR, Rajabi Z, Hosseini SM, Mohammadi M (2013) Preparation and Characterization of Polycarbonate-Blend-Raw/Functionalized Multi-Walled Carbon Nano Tubes Mixed Matrix Membrane for CO2 Separation. Sep. Sci. Techno. 48:1261–1271. https://doi.org/10.1080/01496395.2012.730597
  • [11] Karimi S, Firouzfar E, Khoshchehreh MR (2019) Assessment of gas separation properties and CO2 plasticization of polysulfone/polyethylene glycol membranes, J Pet. Sci. Eng. 173:13–19. https://doi.org/10.1016/J.PETROL.2018.10.012
  • [12] Suzuki T, Yamada Y (2005) Physical and gas transport properties of novel hyperbranched polyimide - Silica hybrid membranes, Polymer Bulletin. 53:139–146. https://doi.org/10.1007/s00289-004-0322-9.
  • [13] Suzuki T, Yamada Y (2007) Effect of end group modification on gas transport properties of 6FDA- TAPOB hyperbranched polyimide-silica hybrid membranes, High Perform Polym. 19:553–564. https://doi.org/10.1177/0954008307081197
  • [14] Alqaheem Y, Alomair A (2019) Recent developments in polyetherimide membrane for gas separation, Journal of the Chinese Chemical Society. 66:1738–1744. https://doi.org/10.1002/jccs.201900060
  • [15] Zid S, Alcouffe P, Zinet M, Espuche E (2022) Mixed-Matrix Membranes Based on Polyetherimide, Metal– Organic Framework and Ionic Liquid: Influence of the Composition and Morphology on Gas Transport Properties. Polymers . https://doi.org/10.3390/polym14173489
  • [16] Awad A, Aljundi IH, Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas. Energy. 157:188–199. https://doi.org/10.1016/J.ENERGY.2018.05.136
  • [17] González-Díaz MO, Sulub-Sulub R, Herrera-Kao W, Vázquez-Torres H, Zolotukhin MG, Aguilar-Vega A (2018) Enhanced Gas Transport Performance of Polyamide Membranes by Postpolymerization Modification. Ind Eng Chem Res. 57:8989–8996. https://doi.org/10.1021/ACS.IECR.8B01772/SUPPL_FILE/IE8B01772_SI_001.PDF
  • [18] Kadirkhan F, Goh PS, Ismail AF, Wan Mustapa WNF, Halim MHM, Soh WK, Yeo SY (2022) Recent Advances of Polymeric Membranes in Tackling Plasticization and Aging for Practical Industrial CO2/CH4 Applications—A Review. Membranes. https://doi.org/10.3390/membranes12010071
  • [19] Alaslai N, Ghanem B, Alghunaimi F, Litwiller E, Pinnau I (2016) Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J Memb Sci. 505:100–107. https://doi.org/10.1016/J.MEMSCI.2015.12.053
  • [20] Sethunga GSMDP, Rongwong W, Wang R, Bae TH, (2018) Optimization of hydrophobic modification parameters of microporous polyvinylidene fluoride hollow-fiber membrane for biogas recovery from anaerobic membrane bioreactor effluent. J Memb Sci. 548:510–518. https://doi.org/10.1016/J.MEMSCI.2017.11.059
  • [21] Ghandashtani MB, Ashtiani FZ, Karimi M, Fouladitajar A (2015), A novel approach to fabricate high performance nano-SiO2 embedded PES membranes for microfiltration of oil-in-water emulsion. Appl Surf Sci. 349:393–402. https://doi.org/10.1016/J.APSUSC.2015.05.037
  • [22] Amirilargani M, Saljoughi E, Mohammadi T, Moghbeli MR (2010) Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes, Polym Eng Sci. 50:885–893. https://doi.org/10.1002/PEN.21603
  • [23] Dorosti F, Alizadehdakhel A (2018) Fabrication and investigation of PEBAX/Fe-BTC, a high permeable and CO2 selective mixed matrix membrane. Chemical Engineering Research and Design. 136:119–128. https://doi.org/10.1016/J.CHERD.2018.01.029
  • [24] Vega J, Andrio A, Lemus AA, Díaz JAI, del Castillo LF, Gavara R, Compañ V (2019) Modification of polyetherimide membranes with ZIFs fillers for CO2 separation. Sep Purif Technol. 212:474–482. https://doi.org/10.1016/J.SEPPUR.2018.11.033
  • [25] Chinea L, Slopiecka K, Bartocci P, Alissa Park AH, Wang S, Jiang D, Fantozzi F (2023) Methane enrichment of biogas using carbon capture materials. Fuel. https://doi.org/10.1016/J.FUEL.2022.126428
  • [26] Alqaheem Y, Alomair A (2019) Recent developments in polyetherimide membrane for gas separation. Journal of the Chinese Chemical Society. 66:1738–1744. https://doi.org/10.1002/jccs.201900060
  • [27] Freeman BD (1999) Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules. 32:375–380. https://doi.org/10.1021/MA9814548
  • [28] Lin CW, Mak WH, McVerry BT, Kaner RB (2019) Separation Techniques Using Conjugated Polymers. Conjugated Polymers: Properties, Processing, and Applications. https://doi.org/10.1201/9780429190520- 21/SEPARATION-TECHNIQUES-USING-CONJUGATED-POLYMERS-CHENG-WEI-LIN-WAI- MAK-BRIAN-MCVERRY-RICHARD-KANER
  • [29] Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S (2015) Recent developments in membranes for efficient hydrogen purification. J Memb Sci. 495:130–168. https://doi.org/10.1016/J.MEMSCI.2015.08.010
  • [30] Romero AI, Parentis ML, Habert AC, Gonzo EE (2011) Synthesis of polyetherimide/silica hybrid membranes by the sol-gel process: Influence of the reaction conditions on the membrane properties. J Mater Sci. 46:4701–4709. https://doi.org/10.1007/s10853-011-5380-4
  • [31] Ma J, Ying Y, Guo X, Huang H, Liu D, Zhong C (2016) Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation. J Mater Chem A Mater. 4:7281–7288. https://doi.org/10.1039/C6TA02611G
  • [32] Eirasa D, Labreche Y, Pessan LA (2016) Ultem®/ZIF-8 mixed matrix membranes for gas separation: Transport and physical properties. Materials Research. 19:220–228. https://doi.org/10.1590/1980-5373- MR-2015-0621
  • [33] Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Memb Sci. 314:123–133. https://doi.org/10.1016/j.memsci.2008.01.03
  • [34] Li W, Li Y, Caro J, Huang A (2022) Fabrication of a flexible hydrogen-bonded organic framework based mixed matrix membrane for hydrogen separation. J Memb Sci. 643, 120021. https://doi.org/10.1016/J.MEMSCI.2021.120021
  • [35] Park HB, Kim JK, Nam SY, Lee YM (2003) Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties. J Memb Sci. 220:59–73. https://doi.org/10.1016/S0376-7388(03)00215-1
  • [36] Ozturk B, Demirciyeva F (2013) Comparison of biogas upgrading performances of different mixed matrix membranes. Article in The Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2013.02.062
  • [37] Hibshman C, Cornelius CJ, Marand E (2003) The gas separation effects of annealing polyimide- organosilicate hybrid membranes. J Memb Sci. 211:25–40. https://doi.org/10.1016/S0376- 7388(02)00306-X
APA DALGAKIRAN D, DENIZ S (2023). Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. , 39 - 52. 10.29228/JIENS.66787
Chicago DALGAKIRAN DILEK,DENIZ SENNUR Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. (2023): 39 - 52. 10.29228/JIENS.66787
MLA DALGAKIRAN DILEK,DENIZ SENNUR Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. , 2023, ss.39 - 52. 10.29228/JIENS.66787
AMA DALGAKIRAN D,DENIZ S Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. . 2023; 39 - 52. 10.29228/JIENS.66787
Vancouver DALGAKIRAN D,DENIZ S Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. . 2023; 39 - 52. 10.29228/JIENS.66787
IEEE DALGAKIRAN D,DENIZ S "Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri." , ss.39 - 52, 2023. 10.29228/JIENS.66787
ISNAD DALGAKIRAN, DILEK - DENIZ, SENNUR. "Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri". (2023), 39-52. https://doi.org/10.29228/JIENS.66787
APA DALGAKIRAN D, DENIZ S (2023). Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. Journal of innovative engineering and natural science (Online), 3(1), 39 - 52. 10.29228/JIENS.66787
Chicago DALGAKIRAN DILEK,DENIZ SENNUR Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. Journal of innovative engineering and natural science (Online) 3, no.1 (2023): 39 - 52. 10.29228/JIENS.66787
MLA DALGAKIRAN DILEK,DENIZ SENNUR Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. Journal of innovative engineering and natural science (Online), vol.3, no.1, 2023, ss.39 - 52. 10.29228/JIENS.66787
AMA DALGAKIRAN D,DENIZ S Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. Journal of innovative engineering and natural science (Online). 2023; 3(1): 39 - 52. 10.29228/JIENS.66787
Vancouver DALGAKIRAN D,DENIZ S Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri. Journal of innovative engineering and natural science (Online). 2023; 3(1): 39 - 52. 10.29228/JIENS.66787
IEEE DALGAKIRAN D,DENIZ S "Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri." Journal of innovative engineering and natural science (Online), 3, ss.39 - 52, 2023. 10.29228/JIENS.66787
ISNAD DALGAKIRAN, DILEK - DENIZ, SENNUR. "Dumanlı silika nanopartikülleri ile polieterimid esaslı nanokompozit membranların hazırlanması ve gaz geçirgenlik özellikleri". Journal of innovative engineering and natural science (Online) 3/1 (2023), 39-52. https://doi.org/10.29228/JIENS.66787