Yıl: 2023 Cilt: 25 Sayı: 1 Sayfa Aralığı: 122 - 136 Metin Dili: Türkçe DOI: 10.25092/baunfbed.1149532 İndeks Tarihi: 10-05-2023

Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması

Öz:
Güneş enerjisi üretiminde fotovoltaik sistemlerin tabii ve suni göller ve baraj hazneleri üzerine kurulması son senelerde artış gösteren bir uygulamadır. Bu çalışmada fotovoltaik santrallerin açık deniz ortamında kurulumu halinde sistemlerin verim, üretim ve maliyet oranları açılarından açık deniz rüzgâr santralleri ile karşılaştırılmaları hedeflenmiştir. Bu amaçla Türkiye'nin Akdeniz kıyılarında dört farklı konum uygulama alanı olarak seçilmiştir. Güneş verileri ECMWF ERA-5 veritabanından edinilmiş ve PVSyst 6.8.5 yazılımı ile 5MW’lık bir kurulum için güç üretimleri hesaplanmıştır. Rüzgâr verileri NCEP veritabanından alınmış ve NREL 5MW referans türbini üzerinden güç üretimi hesaplanmıştır. Kurulum maliyetleri ve enerji üretimi değerleri her iki sistem için karşılaştırılmış olup incelenen dört bölgede de yüzer GES kurulumu enerji üretimi ve yatırım verimliliği açılarından daha avantajlı bulunmuştur.
Anahtar Kelime: Fotovoltaik sistemler güneş enerjisi açık deniz yapıları rüzgâr enerjisi enerji üretimi

Efficiency-based comparison of offshore solar and wind energy production in the Mediterranean coasts of Turkey

Öz:
Deployment of photovoltaic systems on natural and artificial lakes and dam reservoirs is a developing and spreading application in the recent years for the harvestment of solar energy. In this study, the efficiency, energy production and cost ratios of photovoltaic systems suitable for offshore use has been studied and compared with offshore wind farms. For this purpose, four locations on Turkey's Mediterranean coast were chosen. ECMWF ERA-5 dataset has been used for the solar power calculations carried out in PVSyst 6.8.5 software considering a 5MW deployment. NCEP wind data has been used with the NREL 5MW prototype offshore wind turbine to evaluate the wind power. Construction costs and energy production values are evaluated and compared. It has been found that offshore PV farms can provide a higher energy production and investment efficiency on all four locations.
Anahtar Kelime: Photovoltaic systems solar energy offshore structures wind energy energy production

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Kılavuz, T., Türkiye’de rüzgâr enerjisi yatırımlarındaki devlet teşviklerinin gerçek opsiyonlar yöntemiyle incelenmesi, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, (2012).
  • [2] Çelik, Ö., Teke, A. ve Tan, A., Overview of micro-inverters as a challenging technology in photovoltaic applications, Renewable and Sustainable Energy Reviews, 82, 3191-3206, (2018).
  • [3] Owusu, P. A. ve Asumadu-Sarkodie, S., A review of renewable energy sources, sustainability issues and climate change mitigation, Cogent Engineering, 3, 1, 1167990, (2016).
  • [4] Holdren, J. P., The energy innovation imperative: Addressing oil dependence, climate change and other 21st century energy challenges, Innovations: Technology Governance, Globalization, 1, 2, 3-23, (2006).
  • [5] Lebedys, A., Akande, D., Coent, N., Elhassan, N., Escamilla, G., Arkhipova, I. ve Whiteman, A., Renewable Capacity Statistics 2022, International Renewable Energy Agency (IRENA), Abu Dhabi, (2022), https://irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022, (22.05.2022).
  • [6] TEİAŞ Yük Tevzi Dairesi Başkanlığı, Nisan 2022 kurulu güç raporu, https://www.teias.gov.tr/tr-TR/kurulu-guc-raporlari, (22.05.2022).
  • [7] Ay, A., Energy sources and investment Project assessment: A case study about wind energy in Turkey, Yüksek Lisans Tezi, Bahçeşehir Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, (2010).
  • [8] The International Renewable Energy Agency (IRENA), Solar energy data installed capacity trends, https://www.irena.org/solar, (10.05.2022).
  • [9] Schmela, M., Hemetsberger, W. ve Sauaia, R. L., Global Market Outlook for Solar Power 2021-2025, SolarPower Europe, (2021), https://www.solarpowereurope.org/insights/market-outlooks/global-market- outlook-for-solar-power-2022, (25.05.2022).
  • [10] EPİAŞ, Elektrik piyasası bültenleri, https://www.epias.com.tr/spot-elektrik- piyasasi/elektrik-piyasasi- bultenler/elektrik-piyasasi-aylik-bulten, (22.05.2022).
  • [11] https://kalyonpv.com/gunes-santrali.html#1, (22.05.2022).
  • [12] Brewer, J., Ames, D. P., Solan, D., Lee, R. ve Carlisle, J., Using GIS analysis and social preference data to evaluate utility-scale solar power site suitability, Renewable Energy, 81, 825-836, (2015).
  • [13] Charabi, Y. ve Gastli, A., PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation, Renewable Energy, 36, 9, 2554-2561, (2011).
  • [14] Kereush, D. ve Perovych, I., Determining criteria for optimal site selection for solar power plants, Geomatics, Landmanagement and Landscape, (2017).
  • [15] Lee, J. ve Zhao, F., Global Wind Report 2022, Global Wind Energy Council (GWEC), https://gwec.net/global-wind-report-2022/, (25.05.2022).
  • [16] Markard, J. Ve Petersen, R., The offshore trend: Structural changes in the wind power sector, Energy Policy, 37, 9, 3545-3556, (2009).
  • [17] Esteban, M. D., Diez, J. J., López, J. S. ve Negro, V., Why offshore wind energy?, Renewable Energy, 36, 2, 444-450, (2019).
  • [18] O’Sullivan, R., Komusanac, I., Brindley, G., Fralle, D. ve Ramirez, L., Wind energy in Europe-2021 Statistics and the outlook for 2022-2026,WindEurope, https://windeurope.org/intelligence-platform/product/wind-energy-in-europe- 2021-statistics-and-the-outlook-for-2022-2026/, (2022).
  • [19] Bilgili, M., Yasar, A. ve Şimşek, E., Offshore wind power development in Europe and its comparison with onshore counterpart, Renewable and Sustainable Energy Reviews, 15, 2, 905-915, (2011).
  • [20] Sun, X., Huang, D. ve Wu, G., The current state of offshore wind energy technology development, Energy, 41, 1, 298-312, (2012). [21] Ritchie, H. ve Roser, M., Renewable energy: Our World in Data, https://ourworldindata.org/renewable-energy, (19.06.2019).
  • [22] Gökbulak, F. ve Özhan, S., Water loss through evaporation from water surface of lakes and reservoirs in Turkey, E-Water: Official Publication of the European Water Association, (2006).
  • [23] Sharma, P., Muni, B. ve Sen, D., Design parameters of 10KW floating solar power plant, Int. Advanced Research Journal in Science, Engineering and Technology (IARJSET), National Conference on Renewable Energy and Environment (NCREE-2015), 2, (2015).
  • [24] Gamarra, C. Ve Ronk, J. J., Floating solar: An emerging opportunity at the energy- water Nexus, Texas Water Journal, 10, 1, 32-45, (2019).
  • [25] Abid M, Abid Z, Sagin J, Murtaza R, Sarbassov D. ve Shabbir M., Prospects of floating photovoltaic technology and its implementation in Central and South Asian Countries, International Journal of Environmental Science and Technology, 16, 3, 1755-1762, (2019).
  • [26] Exley, G., Floating solar farms could cool down lakes threatened with climate change, https://www.weforum.org/agenda/2021/04/floating-solar-farms-lakes- threatened-climate-change, (06.11.2021).
  • [27] World Bank Group, ESMAP and SERIS, Where sun meets water: Floating solar market report, Washington DC, World Bank, (2019).
  • [28] https://www.gvip.io/p/saemangeum-floating-solar-project-21gw, (06.11.2021).
  • [29] Bellini, E., Worlds largest floating PV plant goes online in China, PV Magazine, https://www.pv-magazine.com/2022/01/03/worlds-largest-floating-pv-plant- goes-online-in- china/#:~:text=Huaneng%20Power%20International%20(HPI)%20has,GW%20 Dezhou%20thermal%20power%20station, (20.05.2022).
  • [30] Petrova, M.A., NIMBYism revisited: Public acceptance of wind energy in the United States, Wiley Interdisciplinary Reviews: Climate Change, 4, 6, 575-601, (2013).
  • [31] Liebe, U. ve Dobers, G. M., Decomposing public support for energy policy: What drives acceptance of and intentions to protest against renewable energy expansion in Germany?, Enery Research & Social Science, 47, 247-260, (2019).
  • [32] Maleki-Dizaji, P., Del Bufalo, N., Di Nucci, M. R. Ve Krug, M., Overcoming barriers to the community acceptance of wind energy: Lessons learnt from a comparative analysis of best practice cases across Europe, Sustainability, 12, 9, 3562, (2020).
  • [33] Hanger, S., Komentantoya, N., Schinke, B., Zejli, D., Ihlal, A. ve Patt, A., Community acceptance of large-scale solar energy installations in developing countries: Evidence from Morocco, Energy Research & Social Science, 14, 80- 89, (2016).
  • [34] Uçar, A. ve Balo, F., Assessment of wind power potential for türbine installation in coastal areas of Turkey, Renewable and Sustainable Energy Reviews, 14, 7, 1901-1912, (2010).
  • [35] Küçükkaya, E. (2019). Türkiye Danimarka ile işbirliği yaparak deniz üstü RES Projelerine Başlıyor, Enerji Portalı, https://www.enerjiportali.com/turkiye- danimarka-ile-isbirligi-yaparak-deniz-ustu-res-projelerine-basliyor/, (25.05.2022).
  • [36] Oğuz, E., Akgül, M. A. ve İncecik, A., Offshore wind farms: Potential and applicability in the Southern Marmara Region, Turkey, Proc. Of the 9th IMAM Conference, International Maritime Association of Mediterranean, A Coruna, 883-891, (2013).
  • [37] Global wind atlas, https://globalwindatlas.info/, (22.04.2022).
  • [38] Yıldız, C. ve Akgül, M. A., Offshore PV farms: Production assessment for southern Turkey seas, Proc. of the 2nd GAP International Renewable Energy and Energy Efficiency Congress, Şanlıurfa, 102-105, (2020).
  • [39] https://earth.google.com/web/@38.9294322,35.04447768,1466.20617118a,2050 246.60885602d,35y,-2.266564h,4.00661656t,0r, (05.05.2022). [40] Jonkman, J., Butterfield, S., Musial, W. ve Scott, G., Definition of a 5-MW reference wind turbine for offshore system development, NREL Teknik Rapor TP-500-38060, National Renewable Energy Laboratories (NREL), Golden, CO, (2009).
  • [41] Yıldız, C., Offshore solar plants: A design study, Yüksek Lisans Tezi, Yeditepe Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, (2020).
  • [42] https://indir.cw-enerji.com/mono-perc-mono-gunes-panelleri, (15.06.2020).
  • [43] European Centre for Medium-Range Weather Forecasts (ECMWF), https://www.ecmwf.int/, (15.02.2020).
  • [44] https://www.nrc.gov/reading-rm/basic-ref/glossary/capacity-factornet.html, (15.06.2020).
  • [45] Weston, D., Europe's offshore wind costs falling steeply, Wind Power Monthly, https://www.windpowermonthly.com/article/1525362/europes-offshore-wind- costs-falling-steeply, (05.05.2020).
  • [46] Bolak, M., İşletme finansı, Birsen Yayınevi, İstanbul, (2000).
  • [47] Göker, O., Yatırım projelerinin değerlendirilmesi teori ve uygulama, Atlantis İletişim, (1996).
  • [48] Sarıaslan, H., Yatırım projelerinin hazırlanması ve değerlendirilmesi planlama- analiz-fizibilite, Siyasal Kitabevi, Ankara, (2006).
APA Yıldız C, AKGÜL M (2023). Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. , 122 - 136. 10.25092/baunfbed.1149532
Chicago Yıldız Cemre,AKGÜL M. Adil Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. (2023): 122 - 136. 10.25092/baunfbed.1149532
MLA Yıldız Cemre,AKGÜL M. Adil Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. , 2023, ss.122 - 136. 10.25092/baunfbed.1149532
AMA Yıldız C,AKGÜL M Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. . 2023; 122 - 136. 10.25092/baunfbed.1149532
Vancouver Yıldız C,AKGÜL M Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. . 2023; 122 - 136. 10.25092/baunfbed.1149532
IEEE Yıldız C,AKGÜL M "Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması." , ss.122 - 136, 2023. 10.25092/baunfbed.1149532
ISNAD Yıldız, Cemre - AKGÜL, M. Adil. "Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması". (2023), 122-136. https://doi.org/10.25092/baunfbed.1149532
APA Yıldız C, AKGÜL M (2023). Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 122 - 136. 10.25092/baunfbed.1149532
Chicago Yıldız Cemre,AKGÜL M. Adil Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no.1 (2023): 122 - 136. 10.25092/baunfbed.1149532
MLA Yıldız Cemre,AKGÜL M. Adil Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.25, no.1, 2023, ss.122 - 136. 10.25092/baunfbed.1149532
AMA Yıldız C,AKGÜL M Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 25(1): 122 - 136. 10.25092/baunfbed.1149532
Vancouver Yıldız C,AKGÜL M Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 25(1): 122 - 136. 10.25092/baunfbed.1149532
IEEE Yıldız C,AKGÜL M "Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması." Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25, ss.122 - 136, 2023. 10.25092/baunfbed.1149532
ISNAD Yıldız, Cemre - AKGÜL, M. Adil. "Türkiye’nin Akdeniz kıyılarında açık deniz güneş ve rüzgâr enerjisi üretiminin verim bazlı karşılaştırılması". Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (2023), 122-136. https://doi.org/10.25092/baunfbed.1149532