Yıl: 2022 Cilt: 33 Sayı: 3 Sayfa Aralığı: 139 - 145 Metin Dili: İngilizce DOI: 10.21653/tjpr.998024 İndeks Tarihi: 07-03-2023

THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS

Öz:
Purpose: Pelvis and trunk structure are body segments that are integrated with each other. Collaboration between pelvic mobility and trunk muscles plays a significant role in walking and energy consumption. The aim of this study is to investigate the relationship between trunk muscle strength and pelvic oscillations. Methods: Twenty-eight healthy individuals volunteered for the study (16 women, 12 men; mean age 24.46 ± 2.97 yrs., height 172.03 ± 9.41cm, weight 67.78 ± 16.31 kg). Pelvic oscillations were measured by using a wireless tri-axial accelerometer. Trunk muscle strength was evaluated with Isokinetic Dynamometer (Cybex Humac Norm Testing & Rehabilitation System, USA). The trunk extensors and flexors were tested concentrically at 60°s. Statistically, the direction and level of the relationship were examined by using Spearman Correlation Analysis. Results: Correlation analysis showed significant relationships between concentric strength of trunk flexion and anterior-posterior pelvic tilt (r=-0.419 p<0.05), lateral pelvic tilt (r=-0.768 p<0.001), and hip rotation (r=-0.382 p<0.001). A statistically significant relationship was not observed between concentric strength of trunk extension and anterior-posterior pelvic tilt, and hip rotation (p>0.05). Conclusion: The current study reports that trunk muscle strength is associated with pelvic oscillations. In particular, the increase in the strength of the trunk flexor group muscles has been shown to limit the mobility of the pelvis. In addition, these results show that the increase in trunk muscle strength provides a stable basis for the pelvis during walking. Therefore, the authors of the current study think that a stable pelvis structure will contribute to the prevention of possible pathologies related to the lower extremity.
Anahtar Kelime: Biomechanics Gait Analysis Muscle Strength Trunk

ASEMPTOMATİK FİZİKSEL İNAKTİF YETİŞKİNLERDE GÖVDE KAS KUVVETİ İLE PELVİK SALINIMLAR ARASINDAKİ İLİŞKİ

Öz:
Amaç: Pelvis ve gövde yapısı birbiriyle bütünleşmiş vücut bölümleridir. Pelvik mobilite ve gövde kasları arasındaki entegrasyon, yürüme ve enerji tüketiminde önemli bir rol oynar. Bu çalışmanın amacı gövde kas kuvveti ile pelvik salınımlar arasındaki ilişkiyi araştırmaktır. Yöntem: 28 sağlıklı birey çalışma için gönüllü oldu (16 kadın, 12 erkek; ortalama yaş 24,46 ± 2,97 yıl, boy 172,03 ± 9,41 cm, ağırlık 67,78 ± 16,31 kg). Pelvik salınımlar üç boyutlu kablosuz ivmeölçer kullanılarak ölçüldü. Gövde kas kuvveti İzokinetik Dinamometre (Cybex Humac Norm Testing & Rehabilitation System, USA) ile değerlendirildi. Gövde ekstansörleri ve fleksörleri 60°/sn lik açısal hızda konsantrik olarak test edildi. İstatistiksel olarak ilişkinin yönü ve düzeyi ise Spearman Korelasyon Analizi yapılarak incelendi. Sonuçlar: Korelasyon analizi, konsantrik gövde fleksiyon kuvveti ile ön-arka pelvik eğim (r=-0,419 p<0,05), yana pelvik eğim(r=-0,768 p<0,001) ve kalça rotasyonu (r=-0,382 p<0,001) arasında anlamlı ilişkiler olduğunu gösterdi. Konsantrik gövde ekstansiyon kuvveti ile ön-arka pelvik eğim ve kalça rotasyonu arasında istatistiksel olarak anlamlı bir ilişki gözlenmedi (p>0,05). Tartışma: Mevcut çalışma, gövde kas kuvvetinin pelvik salınımlarla ilişkili olduğunu bildirmektedir. Özellikle gövde fleksör grup kaslarının kuvvetindeki artışın pelvis hareketliliğini sınırladığını göstermiştir. Ek olarak, bu sonuçlar gövde kas gücündeki artışın yürüyüş sırasında pelvis için stabil bir temel sağladığını göstermektedir. Bu nedenle mevcut çalışmanın yazarları, stabil bir pelvis yapısının alt ekstremite ile ilgili olası patolojilerin önlenmesine katkıda bulunacağını düşünmektedir.
Anahtar Kelime: Biyomekani Yürüyüş analizi Kas kuvveti Gövde

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bagherian S, Ghasempoor K, Rahnama N, Wikstrom, EA. The ef- fect of core stability training on functional movement patterns in college athletes. J Sport Rehabil. 2019;28(5):444-449.
  • 2. Celenay ST, Ozkan T, Unluer NO. Short-term effects of trunk ki- nesio taping on trunk muscle endurance and postural stability ın healthy young adults: a randomized controlled trial. Turk J Phys- iother Rehabil. 2019;30(2):89-96.
  • 3. Kim TH, Lee CW, Kim SG, An, BW. The effect of a pelvis-concen- trated exercise program on male college students’ body align- ment and foot base pressure. J Phys. Ther. Sci. 2015;27(4):1165- 7.
  • 4. Tsai YJ, Chia CC, Lee PY, Lin LC, Kuo YL. Landing kinematics, sports performance, and isokinetic strength in adolescent male volleyball athletes: influence of core training. J Sport Rehabil. 2020;29(1):65-72.
  • 5. Katzel LI, Ivey FM, Sorkin JD, Macko RF, Smith B, Shulman, LM. Impaired economy of gait and decreased six-minute walk dis- tance in Parkinson’s disease. J Parkinsons Dis. 2012;2012.
  • 6. Hammer N, Scholze M, Kibsgård T, Klima S, Schleifenbaum S, Seidel T, et al. Physiological in vitro sacroiliac joint motion: a study on three-dimensional posterior pelvic ring kinematics. J Anat. 2019;234(3):346-58.
  • 7. Jeong, J, Choi DH, Shin CS. Core strength training can alter neu- romuscular and biomechanical risk factors for anterior cruciate ligament injury. Am J Sports Med. 2021;49(1): 183-192.
  • 8. Zazulak B, Cholewicki J, Reeves PN. Neuromuscular control of trunk stability: clinical implications for sports injury prevention. J Am Acad Orthop Surg. 2008;16(8):497-505.
  • 9. Arampatzis A, Frank J, Laube G, Mersmann F. Trunk muscle strength and lumbo-pelvic kinematics in adolescent athletes: Effects of age and sex. Scand J Med Sci Sports. 2019;29(11): 1691-1698.
  • 10. Kuszewski MT, Gnat R, Gogola A. The impact of core muscles training on the range of anterior pelvic tilt in subjects with in- creased stiffness of the hamstrings. Hum Mov Sci. 2018;57:32- 9.
  • 11. American College of Sports Medicine. ACSM’s exercise testing and prescription. Lippincott williams & wilkins. Philadelphia; 2017.
  • 12. Park G, Woo Y. Comparison between a center of mass and a foot pressure sensor system for measuring gait parameters in healthy adults. J Phys Ther Sci. 2015;27(10):3199-202.
  • 13. Yazici G, Yazici MV, Çobanoğlu G, Kupeli, B, Ozkul C, Oskay D, et al. The reliability of a wearable movement analysis system (g-walk) on gait and jump assessment in healthy adults. J Exerc Ther Rehabil. 2020;7(2):159-67.
  • 14. Kim CG, Jeoung BJ. Assessment of isokinetic muscle function in Korea male volleyball athletes. J Exerc Rehabil. 2016;12(5):429.
  • 15. García-Vaquero MP, Barbado D, Juan-Recio C, López-Valenciano A, Vera-Garcia FJ. Isokinetic trunk flexion–extension protocol to assess trunk muscle strength and endurance: reliability, learning effect, and sex differences. J Sport Health Sci. 2020;9(6):692- 701.
  • 16. Finner H, Gontscharuk V. Two-sample Kolmogorov–Smirnov-type tests revisited: old and new tests in terms of local levels. Ann Stat. 2018;46(6A):3014-37.
  • 17. Seay JF, Van Emmerik RE, Hamill J. Low back pain status affects pelvis-trunk coordination and variability during walking and run- ning. Clin Biomech. 2011;26(6):572-8.
  • 18. Steele J, Bruce-Low S, Smith D, Jessop D, Osborne N. Lumbar kinematic variability during gait in chronic low back pain and associations with pain, disability and isolated lumbar extension strength. Clin Biomech. 2014;29(10):1131-8.
  • 19. Ebrahimi S, Kamali F, Razeghi M, Haghpanah SA. Comparison of the trunk-pelvis and lower extremities sagittal plane in - ter-segmental coordination and variability during walking in persons with and without chronic low back pain. Hum Mov Sci. 2017;52:55-66.
  • 20. Bagheri R, Parhampour B, Pourahmadi M, Fazeli SH, Takamja- ni IE, Akbari M, et al. The effect of core stabilization exercis- es on trunk–pelvis three-dimensional kinematics during gait in non-specific chronic low back pain. Spine J. 2019;44(13):927-36.
  • 21. Lamoth CJ, Meijer OG, Daffertshofer A, Wuisman PI, Beek PJ. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: changes in motor control. Eur Spine J. 2006;15(1):23-40.
  • 22. Hunt MA, Wrigley TV, Hinman RS, Bennell KL. Individuals with severe knee osteoarthritis (OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and those without knee pain. Arthritis Care Res. 2010;62(10):1426- 32.
  • 23. Chiba H, Ebihara S, Tomita N, Sasaki H, Butler JP. Differential gait kinematics between fallers and non-fallers in communi - ty-dwelling elderly people. Geriatr Gerontol Int. 2005;5(2):127- 34.
  • 24. Kobayashi Y, Hobara H, Heldoorn TA, Kouchi M, Mochimaru M. Age-independent and age-dependent sex differences in gait pat- tern determined by principal component analysis. Gait Posture. 2016;46:11-7.
  • 25. Stansfield B, Hawkins K, Adams S, Bhatt H. A mixed linear mod- elling characterisation of gender and speed related changes in spatiotemporal and kinematic characteristics of gait across a wide speed range in healthy adults. Med Eng Phys. 2018;60:94- 102.
  • 26. Bruening DA, Frimenko RE, Goodyear CD, Bowden DR, Fullen- kamp AM. Sex differences in whole body gait kinematics at pre- ferred speeds. Gait Posture. 2015;41(2):540-5.
  • 27. Smith LK, Lelas JL, Kerrigan DC. Gender differences in pelvic mo- tions and center of mass displacement during walking: stereo- types quantified. J Wom Health Gend Base Med. 2002;11(5):453- 8.
  • 28. Wall-Scheffler CM, Myers MJ. The biomechanical and energetic advantages of a mediolaterally wide pelvis in women. Anat Rec. 2017;300(4):764-75.
  • 29. Whitcome KK, Miller EE, Burns JL. Pelvic rotation effect on hu- man stride length: Releasing the constraint of obstetric selec - tion. Anat Rec. 2017;300(4):752-63.
  • 30. IJmker T, Lamoth CJ, Houdijk H, van der Woude LH, Beek PJ. Pos- tural threat during walking: effects on energy cost and accom- panying gait changes. J Neuroeng Rehabil. 2014;11(1):71.
  • 31. Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am. 1953;35(3):543-58.
  • 32. Gordon KE, Ferris DP, Kuo AD. Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch Phys Med Rehabil. 2009;90(1):136-44.
  • 33. Ortega JD, Farley CT. Minimizing center of mass vertical movement increases metabolic cost in walking. J Appl Physiol. 2005;99(6):2099-107.
  • 34. Wurdeman S, Raffalt P, Stergiou N. Reduced vertical displace- ment of the center of mass is not accompanied by reduced oxy- gen uptake during walking. Sci Rep. 2017;7(1):1-13.
  • 35. Alexander RM. Simple models of human movement. Appl Mech Rev. 1995;48(8):461-470.
  • 36. Kuo AD. The six determinants of gait and the inverted pen- dulum analogy: A dynamic walking perspective. Hum Mov Sci. 2007;26(4):617-56.
APA zorlular a, Aygun Polat E, Kafa N, atalay güzel n (2022). THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. , 139 - 145. 10.21653/tjpr.998024
Chicago zorlular ali,Aygun Polat Elif,Kafa Nihan,atalay güzel nevin THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. (2022): 139 - 145. 10.21653/tjpr.998024
MLA zorlular ali,Aygun Polat Elif,Kafa Nihan,atalay güzel nevin THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. , 2022, ss.139 - 145. 10.21653/tjpr.998024
AMA zorlular a,Aygun Polat E,Kafa N,atalay güzel n THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. . 2022; 139 - 145. 10.21653/tjpr.998024
Vancouver zorlular a,Aygun Polat E,Kafa N,atalay güzel n THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. . 2022; 139 - 145. 10.21653/tjpr.998024
IEEE zorlular a,Aygun Polat E,Kafa N,atalay güzel n "THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS." , ss.139 - 145, 2022. 10.21653/tjpr.998024
ISNAD zorlular, ali vd. "THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS". (2022), 139-145. https://doi.org/10.21653/tjpr.998024
APA zorlular a, Aygun Polat E, Kafa N, atalay güzel n (2022). THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online), 33(3), 139 - 145. 10.21653/tjpr.998024
Chicago zorlular ali,Aygun Polat Elif,Kafa Nihan,atalay güzel nevin THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online) 33, no.3 (2022): 139 - 145. 10.21653/tjpr.998024
MLA zorlular ali,Aygun Polat Elif,Kafa Nihan,atalay güzel nevin THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online), vol.33, no.3, 2022, ss.139 - 145. 10.21653/tjpr.998024
AMA zorlular a,Aygun Polat E,Kafa N,atalay güzel n THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online). 2022; 33(3): 139 - 145. 10.21653/tjpr.998024
Vancouver zorlular a,Aygun Polat E,Kafa N,atalay güzel n THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS. Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online). 2022; 33(3): 139 - 145. 10.21653/tjpr.998024
IEEE zorlular a,Aygun Polat E,Kafa N,atalay güzel n "THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS." Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online), 33, ss.139 - 145, 2022. 10.21653/tjpr.998024
ISNAD zorlular, ali vd. "THE RELATIONSHIP BETWEEN TRUNK MUSCLE STRENGTH AND PELVIC OSCILLATION IN ASYMPTOMATIC PHYSICALLY INACTIVE ADULTS". Türk Fizyoterapi ve Rehabilitasyon Dergisi (Online) 33/3 (2022), 139-145. https://doi.org/10.21653/tjpr.998024