Yıl: 2010 Cilt: 3 Sayı: 2 Sayfa Aralığı: 0 - 0 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$

Öz:
In this article, we study the global stability and the asymptotic properties of the nonnegative solutions of the nonlinear difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$, n = 0,1,2, ..... where the parameters A, B, p, q and the initial conditions $x_{−k},...,x_{−1}, x_0$ are arbitrary nonnegative real numbers, while k is a positive integer number. Some numerical examples will be given to illustrate our results. 2000 Mathematics Subject Classifications: 39A10,39A11,39A99,34C99
Anahtar Kelime:

Konular: Matematik
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. T. Aboutaleb, M. A. El-Sayed and A. E. Hamza, Stability of the recursive sequence xn+1 = (α−β xn)/(γ+ xn−1), J. Math. Anal. Appl; 261 (2001), 126-133.
  • [2] R. Agarwal, Difference Equations and Inequalities. Theory, Methods and Applications, Marcel Dekker Inc, New York, 1992.
  • [3] A. M. Amleh, E. A. Grove, G. Ladas and D. A. Georgiou, On the recursive sequence xn+1 = α+(xn−1/xn), J. Math. Anal. Appl; 233 (1999), 790-798.
  • [4] C. W. Clark, A delayed recruitment model of population dynamics with an application to baleen whale populations, J. Math. Biol; 3 (1976), 381-391.
  • [5] R. Devault, W. Kosmala, G. Ladas and S. W. Schultz, Global behavior of yn+1 = (p + yn−k)/(q yn + yn−k), Nonlinear Analysis, 47 (2001), 4743-4751.
  • [6] R. Devault, G. Ladas and S.W. Schultz, On the recursive sequence xn+1 = α+(xn/xn−1), Proc. Amer. Math. Soc; 126(11) (1998), 3257-3261.
  • [7] R. Devault and S. W. Schultz, On the dynamics of xn+1 = (β xn+γxn−1)/(Bxn+Dxn−2), Comm. Appl. Nonlinear Analysis, 12(2005), 35-40.
  • [8] E. M. Elabbasy, H. El- Metwally and E. M. Elsayed, On the difference equation xn+1 = axn − bxn/ 􀀀 c xn − d xn−1  , Advances in Difference Equations, Volume 2006, Article ID 82579, pages 1-10, doi: 10.1155/2006/82579.
  • [9] H. El- Metwally, E. A. Grove and G. Ladas, A global convergence result with applications to periodic solutions, J. Math. Anal. Appl; 245 (2000), 161-170.
  • [10] H. El- Metwally, G. Ladas, E. A. Grove and H. D. Voulov, On the global attractivity and the periodic character of some difference equations, J. Difference Equations and Appl; 7(2001), 837- 850.
  • [11] H. A. El-Morshedy, New explicit global asymptotic stability criteria for higher order difference equations, J. Math. Anal. Appl; 336(2007), 262-276.
  • [12] H. M. EL- Owaidy, A. M. Ahmed and M. S. Mousa, On asymptotic behavior of the difference equation xn+1 = α+ (x p n−1/x p n), J. Appl. Math. & Computing, 12(2003), 31- 37.
  • [13] H. M. EL- Owaidy, A. M. Ahmed and Z. Elsady, Global attractivity of the recursive sequence xn+1 = (α − β xn−k)/(γ + xn), J. Appl. Math. & Computing, 16(2004), 243- 249.
  • [14] C. H. Gibbons, M. R. S. Kulenovic and G. Ladas, On the recursive sequence xn+1 = (α+β xn−1)/(γ+ xn), Math. Sci. Res. Hot-Line, 4 (2), (2000), 1-11.
  • [15] E. A. Grove and G. Ladas, Periodicities in nonlinear difference equations, Vol.4, Chapman & Hall / CRC, 2005.
  • [16] I. Gyori and G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon, Oxford, 1991.
  • [17] G. Karakostas, Convergence of a difference equation via the full limiting sequences method, Diff. Equations and Dynamical. System, 1(1993), 289-294.
  • [18] G. Karakostas and S. Stevic′, On the recursive sequences xn+1 = A + f (xn, . . . xn−k+1)/xn−1, Comm. Appl. Nonlinear Analysis, 11(2004), 87-100.
  • [19] V. L. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [20] M. R. S. Kulenovic and G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapman & Hall / CRC, Florida, 2001.
  • [21] M. R. S. Kulenovic, G. Ladas and W. S. Sizer, On the recursive sequence xn+1 = (αxn + β xn−1)/(γxn +δxn−1), Math. Sci. Res. Hot-Line 2 (5) (1998), 1-16.
  • [22] M. R. S. Kulenovic, G. Ladas and N. R. Prokup, A recursive difference equation, Comput. Math. Appl. 41(2001), 671-678.
  • [23] S. A. Kuruklis, The asymptotic stability of xn+1−axn+ bxn−k = 0, J. Math. Anal. Appl; 188(1994), 719-731.
  • [24] G. Ladas, C. H. Gibbons, M. R. S. Kulenovic and H. D. Voulov, On the trichotomy character of xn+1 = (α + β xn + γxn−1)/(A+ xn), J. Difference Equations and Appl; 8(2002 ), 75-92.
  • [25] G. Ladas, C. H. Gibbons and M. R. S. Kulenovic, On the dynamics of xn+1 = (α + β xn+γxn−1)/(A+Bxn), Proceeding of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000, Taylor and Francis, London (2002), 141-158.
  • [26] G. Ladas, E. Camouzis and H. D. Voulov, On the dynamic of xn+1 = (α + γxn−1 + δxn−2)/(A+ xn−2), J. Difference Equations and Appl; 9(2003), 731-738.
  • [27] G. Ladas, On the rational recursive sequence xn+1 = (α + β xn + γxn−1)/(A + Bxn + C xn−1), J. Difference Equations and Appl; 1(1995), 317-321.
  • [28] W. T. Li and H. R. Sun, Global attractivity in a rational recursive sequence, Dynamical Systems. Appl; 11 (2002), 339 - 346.
  • [29] W. T. Li and H. R. Sun, Dynamics of a rational difference equation, Appl. Math. Comput., 163(2005), 577-591.
  • [30] R. E. Mickens, Difference equations, Theory and Applications, Van Nostrand, New York, 1990.
  • [31] M. Saleh and S. Abu-Baha, Dynamics of a higher order rational difference equation, Appl. Math. Comput; 181(2006), 84-102.
  • [32] S. Stevic′, On the recursive sequences xn+1 = xn−1/g(xn), Taiwanese J. Math; 6(2002), 405-414.
  • [33] S. Stevic′, On the recursive sequences xn+1 = g(xn, xn−1)/(A+ xn), Appl. Math. Letter, 15(2002), 305-308.
  • [34] S. Stevic′, On the recursive sequences xn+1 = α+(x p n−1/x p n), J. Appl.Math.& Computing, 18(2005), 229-234.
  • [35] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = (D + αxn + β xn−1 + γxn−2)/(Axn + Bxn−1 + C xn−2), Comm. Appl. Nonlinear Analysis, 12(2005), 15-28.
  • [36] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = (αxn+ β xn−1+γxn−2+δxn−3)/(Axn+Bxn−1+C xn−2+ Dxn−3), J. Appl. Math. & Computing, 22(2006), 247-262.
  • [37] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive  sequence xn+1 = A+ Pk i=0 αi xn−i  / Pk i=0 βi xn−i , Mathematica Bohemica, 133(2008), No.3, 225-239.
  • [38] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = A+ Pk i=0 αi xn−i  /  B + Pk i=0 βi xn−i  , Int. J. Math. & Math. Sci; Volume 2007, Article ID 23618, 12 pages, doi: 10.1155/2007/23618.
  • [39] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = axn − bxn/ 􀀀 c xn − d xn−k  , Comm. Appl. Nonlinear Analysis, 15(2008), 47-57.
  • [40] 􀀀E. M. E. Zayed and M. A. El-Moneam, On the Rational Recursive Sequence xn+1 = α+β xn−k  / 􀀀 γ− xn  , J. Appl. Math. & Computing, 31(2009), 229-237.
  • [41] E􀀀. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = Axn + β xn +γxn−k  / 􀀀 C xn + Dxn−k  , Comm. Appl. Nonlinear Analysis, 16(2009), 91-106.
  • [42] E. M. E. Zayed and M. A. El-Moneam, On the Rational Recursive Sequence xn+1 = γxn−k + 􀀀 axn + bxn−k  / 􀀀 c xn − d xn−k  , Bulletin of the Iranian Mathematical Society, (to appear).
  • [43] E. M. E. Zayed and M. A. El-Moneam, On the global attractivity of two nonlinear difference equations, J. Math. Sci; (to appear).
  • [44] E. M. E. Zayed and M. A. El-Moneam, On the Rational Recursive two Sequences xn+1 = axn−k + bxn−k/ 􀀀 c xn +δd xn−k  , Acta Math. Vietnamica, (to appear).
  • [45] E. M. E. Zayed and M. A. El-Moneam, On the rational recursive sequence xn+1 = Axn + Bxn−k + 􀀀 β xn +γxn−k  / 􀀀 C xn + Dxn−k  , Acta Appl. Math; 10.1007/s10440- 009-9545-y, in press.
APA ZAYED E (2010). Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. , 0 - 0.
Chicago ZAYED E. M. E. Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. (2010): 0 - 0.
MLA ZAYED E. M. E. Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. , 2010, ss.0 - 0.
AMA ZAYED E Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. . 2010; 0 - 0.
Vancouver ZAYED E Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. . 2010; 0 - 0.
IEEE ZAYED E "Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$." , ss.0 - 0, 2010.
ISNAD ZAYED, E. M. E.. "Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$". (2010), 0-0.
APA ZAYED E (2010). Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. European Journal of Pure and Applied Mathematics (elektronik), 3(2), 0 - 0.
Chicago ZAYED E. M. E. Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. European Journal of Pure and Applied Mathematics (elektronik) 3, no.2 (2010): 0 - 0.
MLA ZAYED E. M. E. Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. European Journal of Pure and Applied Mathematics (elektronik), vol.3, no.2, 2010, ss.0 - 0.
AMA ZAYED E Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. European Journal of Pure and Applied Mathematics (elektronik). 2010; 3(2): 0 - 0.
Vancouver ZAYED E Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$. European Journal of Pure and Applied Mathematics (elektronik). 2010; 3(2): 0 - 0.
IEEE ZAYED E "Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$." European Journal of Pure and Applied Mathematics (elektronik), 3, ss.0 - 0, 2010.
ISNAD ZAYED, E. M. E.. "Dynamics of the nonlinear rational difference equation $x_{n+1} = Ax_n + Bx_{n−k} + frac{px_n+x_{n−k}}{q+x_{n−k}}$". European Journal of Pure and Applied Mathematics (elektronik) 3/2 (2010), 0-0.