Yıl: 2023 Cilt: 47 Sayı: 1 Sayfa Aralığı: 88 - 100 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3520 İndeks Tarihi: 10-03-2023

Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed

Öz:
This study presented a hydrophobic interaction-based poly(HEMA-MATrp) monolithic chromatographic column (MCC) to remove amoxicillin from aqueous solutions. In addition to their porous structure, monolithic-filled columns offer superior properties without loss of performance, which is one of the points that make them unique. The specific surface area of the monolithic column synthesized by the bulk polymerization of 2-hydroxyethyl methacrylate and N-Methacryloyl-L-tryptophan. Also, poly(HEMA- MATrp) MCC has been characterized via FTIR, SEM, and elemental analysis. According to BET analysis, the specific surface area of the poly(HEMA-MATrp) monolithic chromatographic column (MCC) is 14.2 mg/g. The adsorption and desorption of amoxicillin in an aqueous solution were investigated comparatively in both continuous fixed bed and batch adsorption. The highest adsorption value of amoxicillin was determined at pH 7 in the presence of PBS as 62.11 mg/g. The appropriate adsorption isotherm for the adsorption of amoxicillin was Langmuir, and the reaction kinetics was pseudo-second-order. No significant loss was observed for the adsorption capacity of poly(HEMA-MATrp) MCC after the 5 cycles of adsorption-desorption studies. Also, the loss for the adsorption capacity of the monolithic column is just %5.2 after 6-month storage, proving the reusability and storability of the monolithic column.
Anahtar Kelime: Monolithic column hydrophobic interaction liquid chromatography amoxicillin adsorption

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kümmerer K. Antibiotics in the aquatic environment – A review – Part I. Chemosphere 2009; 75: 417–434. https://doi.org/10.1016/j. chemosphere.2008.11.086
  • 2. Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, Ferro-García MA, Bautista T. I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of Hazardous Materials 2009; 170: 298–305. https://doi.org/10.1016/j. jhazmat.2009.04.096
  • 3. Gao Y, Li Y, Zhang L, Huang H, Hu J et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of Colloid and Interface Science 2012; 368: 540–546. https://doi.org/10.1016/j.jcis.2011.11.015
  • 4. Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environmental Science & Technology 2009; 43: 2322–2327. https://doi.org/10.1021/es803268b
  • 5. Stokes J, Lopatkin M, Lobritz MA, Collins, JJ. Bacterial metabolism and antibiotic efficacy. Cell Metabolism 2019; 30: 251–259. https://doi. org/10.1016/j.cmet.2019.06.009
  • 6. Beg S, Kohli K, Swain S, Hasnain MS. Development and validation of RP-HPLC method for quantitation of amoxicillin trihydrate in bulk and pharmaceutical formulations using box-behnken experimental design. Journal of Liquid Chromatography & Related Technologies 2012; 35: 393–406. https://doi.org/10.1080/10826076.2011.601493
  • 7. Zhang C, Woolfork AG, Suh K, Ovbude S, Bi C et al. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. Journal of Pharmaceutical and Biomedical Analysis. 2020; 177. https://doi.org/10.1016/j.jpba.2019.112882
  • 8. Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J et al. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research 2011; 45: 75–92. https://doi.org/10.1016/j.watres.2010.08.019
  • 9. Zuccato E, Castiglioni S., Bagnati R, Melis M, Fanelli R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials 2010; 179: 1042–1048. https://doi.org/10.1016/j.jhazmat.2010.03.110
  • 10. Elmolla ES, Chaudhuri M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of Hazardous Materials 2010; 173: 445–449. https://doi.org/10.1016/j.jhazmat.2009.08.104
  • 11. Homem V, Alves A, Santos L. Microwave-assisted Fenton’s oxidation of amoxicillin. Chemical Engineering Journal 2013; 220: 35–44. https://doi.org/10.1016/j.cej.2013.01.047
  • 12. Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International 2009; 35: 803–814. https://doi.org/10.1016/j.envint.2008.10.008
  • 13. Faalnouri S, Çimen D, Bereli N, Denizli, A. Surface plasmon resonance nanosensors for detecting amoxicillin in milk sSamples with amoxicillin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(L)- glutamic acid). ChemistrySelect 2020; 5: 4761–4769. https:// doi.org/10.1002/slct.202000621
  • 14. Homayoonfal M, Mehrnia MR. Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Separation and Purification Technology 2014; 130: 74–83. https://doi.org/10.1016/j.seppur.2014.04.009
  • 15. Karimnezhad H, Navarchian AH, Tavakoli Gheinani T, Zinadini S. Amoxicillin removal by Fe-based nanoparticles immobilized on polyacrylonitrile membrane: Effects of input parameters and optimization by response surface methodology. Chemical Engineering and Processing-Process Intensification 2020; 147: 107785. https://doi.org/10.1016/j.cep.2019.107785
  • 16. Xu L, Campos LC, Li J, Karu K, Ciric L. Removal of antibiotics in sand, GAC, GAC sandwich and anthracite/sand biofiltration systems. Chemosphere 2021; 275: 130004. https://doi.org/10.1016/j.chemosphere.2021.130004
  • 17. Padilla-Robles BG, Alonso A, Martinez-Delgadillo SA, Gonzales-Brambilla M, Jauregui-Heza UJ et al. Electrochemical degradation of amoxicillin in aqueous media. Chemical Engineering and Processing-Process Intensification 2015; 94: 93–98. https://doi.org/10.1016/j. cep.2014.12.007
  • 18. Zhao H, Zheng Y, Wang Z, Xie W, Zhou J et al. Preparation of a bacterial flocculant by using caprolactam as a sole substrate and its application in amoxicillin removal. Journal of Environmental Management 2021; 294: 113026. https://doi.org/10.1016/j.jenvman.2021.113026
  • 19. Acero JL, Benitez FJ, Real FJ, Roldan G. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Research 2010; 44: 4158–4170. https://doi.org/10.1016/j.watres.2010.05.012
  • 20. Jung YJ, Gi Kim W, Yoon Y, Kang JW, Min Hong Y et al. Removal of amoxicillin by UV and $UV/H_2O_2$processes. Science of the Total Environment 2012; 420: 160–167. https://doi.org/10.1016/j.scitotenv.2011.12.011
  • 21. Souza FS, da Silva VV, Rosin CK, Heinzenreder L, Arenzon A et al. Comparison of different advanced oxidation processes for the removal of amoxicillin in aqueous solution. Environmental Technology 2017; 549–557. https://doi.org/10.1080/09593330.2017.1306116
  • 22. Kıdak R, Doğan Ş. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrasonics Sonochemistry 2018; 40: 131–139. https://doi.org/10.1016/j.ultsonch.2017.01.033
  • 23. Guo R, Xie X, Chen J. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system. Environmental Technology 2014; 36: 844-851. https://doi.org/10.1080/09593330.2014.963696
  • 24. Mojiri A, Vakili M, Farraji H, Aziz SQ. Combined ozone oxidation process and adsorption methods for the removal of acetaminophen and amoxicillin from aqueous solution; kinetic and optimisation. Environmental Technology & Innovation 2019; 15: 100404. https://doi. org/10.1016/j.eti.2019.100404
  • 25. Zha SX, Zhou, Y, Jin X, Chen Z. The removal of amoxicillin from wastewater using organobentonite. Journal of Environmental Management 2013; 129: 569–576. https://doi.org/10.1016/j.jenvman.2013.08.032
  • 26. Yaghmaeian K, Moussavi G, Alahabadi A. Removal of amoxicillin from contaminated water using NH4Cl-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration. Chemical Engineering Journal 2014; 236: 538–544. https://doi. org/10.1016/j.cej.2013.08.118
  • 27. Chang PH, Li Z, Yu TL, Munkhbayer S, Kuo TH et al. Sorptive removal of tetracycline from water by palygorskite. Journal of Hazardous Materials 2009; 165: 148–155. https://doi.org/10.1016/j.jhazmat.2008.09.113
  • 28. Mohammadi A, Kazemipour M, Ranjbar H, Walker RB, Ansari M. Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures 2014; 23: 165-169. http://dx.doi.org/10.1080/1536383X.2013.866944
  • 29. Balarak D, Mengelizadeh N, Rajiv P, Chandrika K. Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide. Environmental Science and Pollution Research 2021; 1–12. https://doi.org/10.1007/s11356-021- 13525-1
  • 30. Ehtesabi H, Bagheri Z, Yaghoubi-Avini M. Application of three-dimensional graphene hydrogels for removal of ofloxacin from aqueous solutions. Environmental Nanotechnology, Monitoring & Management 2019; 12: 100274. https://doi.org/10.1016/j.enmm.2019.100274
  • 31. Sun H, Shi X, Mao J, Zhu D. Tetracycline sorption to coal and soil humic acids: An examination of humic structural heterogeneity. Environmental Toxicology and Chemistry 2010; 29: 1934–1942. https://doi.org/10.1002/etc.248
  • 32. Mansouri H, Carmona R, Berenguer, AG, Najar SS, Ouederni A et al. Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid and Interface Science 2015; 449: 252–26. https://doi.org/10.1016/j. jcis.2014.12.020
  • 33. Aşır S, Sarı Aydın D, Derazshamshir A, Yılmaz F, Şarkaya K et al. Dopamine-imprinted monolithic column for capillary electrochromatography. Electrophoresis 2017; 38: 3003–3012. https://doi.org/10.1002/elps.201700228
  • 34. Şarkaya K, Aşır S, Göktürk I, Ektiirici S, Yılmaz F et al. Separation of histidine enantiomers by capillary electrochromatography with molecularly imprinted monolithic columns. Separation Science Plus 2020; 3: 235–245. https://doi.org/10.1002/sscp.201900101
  • 35. Núñez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of Chromatography A 2008; 1191: 231–252. https://doi.org/10.1016/j.chroma.2008.02.029
  • 36. Aggarwal P, Tolley, HD, Lee ML. Monolithic bed structure for capillary liquid chromatography. Journal of Chromatography A 2012; 1219: 1–14. https://doi.org/10.1016/j.chroma.2011.10.083
  • 37. Şarkaya K, Aşır S, Göktürk I, Yılmaz F, Yavuz H et al. Electrochromatographic separation of hydrophobic amino acid enantiomers by molecularly imprinted capillary columns. Process Biochemistry 2020; 92: 69–77. https://doi.org/10.1016/j.procbio.2020.02.033
  • 38. Hilder EF, Svec F, Fréchet JM. Development and application of polymeric monolithic stationary phases for capillary electrochromatography. Journal of Chromatography A 2004; 1044: 3–22. https://doi.org/10.1016/j.chroma.2004.04.057
  • 39. Altintaş EB, Denizli A. Monosize magnetic hydrophobic beads for lysozyme purification under magnetic field. Materials Science and Engineering: C 2009; 29: 1627–1634. https://doi.org/10.1016/j.msec.2008.12.028
  • 40. Uzun L, Say R, Denizli A. Porous poly(hydroxyethyl methacrylate) based monolith as a new adsorbent for affinity chromatography. Reactive and Functional Polymers 2005; 64: 93–102. https://doi.org/10.1016/j.reactfunctpolym.2005.05.003
  • 41. Öncel Ş, Uzun L, Garipcan B, Denizli A. Synthesis of phenylalanine-containing hydrophobic beads for lysozyme adsorption. Industrial & Engineering Chemistry Research 2005; 44: 7049–7056. https://doi.org/10.1021/ie0506318
  • 42. Şarkaya K, Bakhshpour M, Denizli A. Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions. Separation Science and Technology 2019; 54: 2993–3004. https://doi.org/10.1080/01496395.2018.1556300
  • 43. Zha SX, Zhou Y, Jin X, Chen Z. The removal of amoxicillin from wastewater using organobentonite. Journal of Environmental Management 2013; 129: 569–576. https://doi.org/10.1016/j.jenvman.2013.08.032
  • 44. de Franco MAE, de Carvalho CB, Bonetto MM, Soares RP, Feris LA. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. Journal of Cleaner Production 2017; 161: 947–956. https://doi.org/10.1016/j.jclepro.2017.05.197
  • 45. Ali I, Afshinb S, Poureshgh Y, Azari A, Rashtbari Y et al. Green preparation of activated carbon from pomegranate peel coated with zero- valent iron nanoparticles (nZVI) and isotherm and kinetic studies of amoxicillin removal in water. Environmental Science and Pollution Research 2020; 27: 36732–36743. https://doi.org/10.1007/s11356-020-09310-1
  • 46. Chaba JM, Nomngongo PN. Effective adsorptive removal of amoxicillin from aqueous solutions and wastewater samples using zinc oxide coated carbon nanofiber composite. Emerging Contaminants 2019; 5: 143–149. https://doi.org/10.1016/j.emcon.2019.04.001
  • 47. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical Engineering Journal 2013; 217: 119–128. https://doi. org/10.1016/j.cej.2012.11.069
  • 48. Caravaca M, Vicente-Martínez Y, Soto-Meca A, Angulo-Gonzales E. Total removal of amoxicillin from water using magnetic core nanoparticles functionalized with silver. Environmental Research 2022; 211: 113091. https://doi.org/10.1016/j.envres.2022.113091
APA Aglamaz M, Şarkaya K, TURKMEN D, Uçar M, Denizli A (2023). Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. , 88 - 100. 10.55730/1300-0527.3520
Chicago Aglamaz Mustafa Deniz,Şarkaya Koray,TURKMEN DENIZ,Uçar Mustafa,Denizli Adil Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. (2023): 88 - 100. 10.55730/1300-0527.3520
MLA Aglamaz Mustafa Deniz,Şarkaya Koray,TURKMEN DENIZ,Uçar Mustafa,Denizli Adil Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. , 2023, ss.88 - 100. 10.55730/1300-0527.3520
AMA Aglamaz M,Şarkaya K,TURKMEN D,Uçar M,Denizli A Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. . 2023; 88 - 100. 10.55730/1300-0527.3520
Vancouver Aglamaz M,Şarkaya K,TURKMEN D,Uçar M,Denizli A Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. . 2023; 88 - 100. 10.55730/1300-0527.3520
IEEE Aglamaz M,Şarkaya K,TURKMEN D,Uçar M,Denizli A "Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed." , ss.88 - 100, 2023. 10.55730/1300-0527.3520
ISNAD Aglamaz, Mustafa Deniz vd. "Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed". (2023), 88-100. https://doi.org/10.55730/1300-0527.3520
APA Aglamaz M, Şarkaya K, TURKMEN D, Uçar M, Denizli A (2023). Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. Turkish Journal of Chemistry, 47(1), 88 - 100. 10.55730/1300-0527.3520
Chicago Aglamaz Mustafa Deniz,Şarkaya Koray,TURKMEN DENIZ,Uçar Mustafa,Denizli Adil Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. Turkish Journal of Chemistry 47, no.1 (2023): 88 - 100. 10.55730/1300-0527.3520
MLA Aglamaz Mustafa Deniz,Şarkaya Koray,TURKMEN DENIZ,Uçar Mustafa,Denizli Adil Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. Turkish Journal of Chemistry, vol.47, no.1, 2023, ss.88 - 100. 10.55730/1300-0527.3520
AMA Aglamaz M,Şarkaya K,TURKMEN D,Uçar M,Denizli A Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. Turkish Journal of Chemistry. 2023; 47(1): 88 - 100. 10.55730/1300-0527.3520
Vancouver Aglamaz M,Şarkaya K,TURKMEN D,Uçar M,Denizli A Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed. Turkish Journal of Chemistry. 2023; 47(1): 88 - 100. 10.55730/1300-0527.3520
IEEE Aglamaz M,Şarkaya K,TURKMEN D,Uçar M,Denizli A "Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed." Turkish Journal of Chemistry, 47, ss.88 - 100, 2023. 10.55730/1300-0527.3520
ISNAD Aglamaz, Mustafa Deniz vd. "Removal of amoxicillin via chromatographic monolithic columns: comparison between batch and continuous fixed bed". Turkish Journal of Chemistry 47/1 (2023), 88-100. https://doi.org/10.55730/1300-0527.3520