Yıl: 2023 Cilt: 47 Sayı: 1 Sayfa Aralığı: 126 - 136 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3523 İndeks Tarihi: 13-03-2023

Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode

Öz:
The electrochemical oxidation of aripiprazole was explored at a carbon paste electrode modified with aluminium oxide nanoparticles by cyclic voltammetry and square-wave anodic adsorptive stripping voltammetry. Experimental parameters such as carbon paste composition, scan rate, buffer pH, accumulation time, and accumulation potential were optimized in order to obtain high analytical performance. The incorporation of aluminium oxide nanoparticles into the carbon paste matrix enhanced the effective surface area of the carbon paste electrode and improved the sensitivity. On the aluminium oxide nanoparticles modified carbon paste electrode, aripiprazole exhibited an irreversible anodic peak at +1.17 V in pH 1.8 BR buffer solution. Under optimum conditions, the peak current exhibited a linear dependence with aripiprazole concentration between 0.03 and 8.0 μM with a detection limit of 0.006 μM. The analytical applicability of the voltammetric method was evaluated by quantification of ARP in human serum samples and pharmaceutical formulations.
Anahtar Kelime: Aripiprazole square wave voltammetry aluminium oxide nanoparticles carbon paste electrode pharmaceutical formulation biological fluid

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. De Deyn PP, Drenth AF, Kremer BP, Oude Voshaar RC, Van Dam D. Aripiprazole in the treatment of Alzheimer’s disease. Expert opinion on pharmacotherapy 2013; 14 (4): 459-474. https://doi.org/10.1517/14656566.2013.764989
  • 2. DeLeon A, Patel NC, Crismon, ML. Aripiprazole: a comprehensive review of its pharmacology, clinical efficacy, and tolerability. Clinical therapeutics 2004; 26 (5): 649-666. https://doi.org/10.1016/s0149-2918(04)90066-5
  • 3. Tsai CJ, Yu YH, Chiu HJ, Loh EW, Wang JT et al. The quantitative detection of aripiprazole and its main metabolite by using capillary- electrophoresis. Journal of the Chinese Medical Association 2011; 74 (6): 267-271. https://doi.org/10.1016/j.jcma.2011.04.006
  • 4. Musenga A, Saracino MA, Spinelli D, Rizzato E, Boncompagni G et al. Analysis of the recent antipsychotic aripiprazole in human plasma by capillary electrophoresis and high-performance liquid chromatography with diode array detection. Analytica chimica acta 2008; 612 (2): 204-211. https://doi.org/10.1016/j.aca.2008.02.046
  • 5. Shimokawa Y, Akiyama H, Kashiyama E, Koga T, Miyamoto G. High performance liquid chromatographic methods for the determination of aripiprazole with ultraviolet detection in rat plasma and brain: application to the pharmacokinetic study. Journal of Chromatography B 2005; 821 (1): 8-14. https://doi.org/10.1016/j.jchromb.2005.03.024
  • 6. Choong E, Rudaz S, Kottelat A, Guillarme D, Veuthey JL et al. Therapeutic drug monitoring of seven psychotropic drugs and four metabolites in human plasma by HPLC–MS. Journal of Pharmaceutical and Biomedical Analysis 2009; 50 (5): 1000-1008. https://doi. org/10.1016/j.jpba.2009.07.007
  • 7. Kubo M, Mizooku Y, Hirao Y, Osumi T. Development and validation of an LC–MS/MS method for the quantitative determination of aripiprazole and its main metabolite, OPC-14857, in human plasma. Journal of Chromatography B 2005; 822 (1-2): 294-299. https://doi. org/10.1016/j.jchromb.2005.06.023
  • 8. Wojnicz A, Belmonte C, Koller D, Ruiz-Nuño A, Román M et al. Effective phospholipids removing microelution-solid phase extraction LC- MS/MS method for simultaneous plasma quantification of aripiprazole and dehydro-aripiprazole: Application to human pharmacokinetic studies. Journal of Pharmaceutical and Biomedical Analysis 2018; 151: 116-125. https://doi.org/10.1016/j.jpba.2017.12.049
  • 9. Eldidamony AM, Hafeez SM, Hafez MMA. Spectrophotometric determination of aripiprazole, clozapine and sulpiride by ion-pair extractionin in tablets and biological fluids. International Journal of Pharmacy and Pharmaceutical Sciences 2014; 7 (1): 178-184
  • 10. Merli D, Dondi D, Ravelli D, Tacchini D, Profumo A. Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. Journal of Electroanalytical Chemistry 2013; 711: 1-7. https://doi.org/10.1016/j.jelechem.2013.09.036
  • 11. Aşangil D, Taşdemir İH, Kılıç E. Adsorptive stripping voltammetric methods for determination of aripiprazole. Journal of Pharmaceutical Analysis 2012; 2 (3): 193-199. https://doi.org/10.1016/j.jpha.2012.01.009
  • 12. Shrivastava R, Saxena S, Satsangee SP, Jain R. $Graphene/TiO_2$/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics 2015; 21 (7): 2039-2049. doi: 10.1007/s11581-014-1353-3
  • 13. Baig N, Sajid M, Saleh, TA. Recent trends in nanomaterial-modified electrodes for electroanalytical applications. Trends in Analytical Chemistry 2019; 111: 47-61. https://doi.org/10.1016/j.trac.2018.11.044
  • 14. Akanda MR, Sohail M, Aziz MA, Kawde AN. Recent advances in nanomaterial modified pencil graphite electrodes for electroanalysis. Electroanalysis 2016; 28 (3): 408-424. https://doi.org/10.1002/elan.201500374
  • 15. Kempahanumakkagari S, Deep A, Kim KH, Kailasa SK, Yoon HO. Nanomaterial-based electrochemical sensors for arsenic-A review. Biosensors and Bioelectronics 2017; 95: 106-116. https://doi.org/10.1016/j.bios.2017.04.013
  • 16. George JM, Antony A, Mathew B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchimica Acta 2018; 185 (7): 1-26. https://doi.org/10.1007/s00604-018-2894-3
  • 17. Jiang J, Li Y, Liu J, Huang X, Yuan C et al. Recent advances in metal oxide based electrode architecture design for electrochemical energy storage. Advanced materials 2012; 24 (38): 5166-5180. https://doi.org/10.1002/adma.201202146
  • 18. Ho MY, Khiew PS, Isa D, Tan TK, Chiu WS et al. A review of metal oxide composite electrode materials for electrochemical capacitors. Nano 2014; 9 (06): 1430002. https://doi.org/10.1142/S1793292014300023
  • 19. Shi X, Gu W, Li B, Chen N, Zhao K et al. Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchimica Acta 2014; 181 (1): 1-22. https://doi.org/10.1007/s00604-013-1069-5
  • 20. Lima AP, Souza RC, Silva MN, Goncalves RF, Nossol E et al. Influence of $Al_2O_3$ nanoparticles structure immobilized upon glassy-carbon electrode on the electrocatalytic oxidation of phenolic compounds. Sensors and Actuators B: Chemical 2018; 262: 646-654. https://doi. org/10.1016/j.snb.2018.02.028
  • 21. Soltani N, Tavakkoli N, Shahdost Fard F, Salavati H, Abdoli F. A carbon paste electrode modified with $Al_2O_3$supported palladium nanoparticles for simultaneous voltammetric determination of melatonin, dopamine, and acetaminophen. Microchimica Acta 2019; 186 (8): 1-13. https://doi.org/10.1007/s00604-019-3541-3
  • 22. Moutcine A, Laghlimi C, Ifguis O, Smaini MA, El Qouatli SE at al. A novel carbon paste electrode modified by NP-Al2O3 for the electrochemical simultaneous detection of Pb (II) and Hg (II). Diamond and Related Materials 2020; 104: 107-747.https://doi.org/10.1016/j. diamond.2020.107747
  • 23. Mashhadizadeh MH, Afshar E. Electrochemical investigation of clozapine at $TiO_2$ nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochimica Acta 2013; 87: 816-823. https://doi. org/10.1016/j.electacta.2012.09.004
  • 24. Tajik S, Beitollahi H, Nejad FG, Safaei M, Zhang K et al. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Advances 2020; 10 (36): 21561-21581. https://doi.org/10.1039/D0RA03672B
  • 25. Erden PE, Zeybek B, Pekyardimc Ş, Kilic E. Amperometric carbon paste enzyme electrodes with $Fe_3O_4$ nanoparticles and 1, 4-Benzoquinone for glucose determination. Artificial cells nanomedicine, and biotechnology 2013; 41 (3): 165-171. https://doi.org/10.3109/10731199.201 2.712045
  • 26. Çölkesen B, Öztürk F, Erden PE. Electroanalytical characterization of montelukast sodium and its voltammetric determination in pharmaceutical dosage form and biological fluids. Journal of the Brazilian Chemical Society 2016; 27: 849-856. http://dx.doi. org/10.5935/0103-5053.20150337
  • 27. Amro AN, Emran K, Alanazi H. Voltammetric determination of itopride using carbon paste electrode modified with Gd doped TiO2 nanotubes. Turkish Journal of Chemistry 2020; 44 (4): 1122. https://doi.org/10.3906/kim-2003-56
  • 28. Cinková K, Kianičkova K, Stanković DM, Vojs M, Marton M et al. The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid. Analytical Methods 2018; 10 (9): 991-996. https://doi.org/10.1039/C7AY02720F
  • 29. Tunca K, Öztürk F, Erden PE. A Comparison of Four Different Electrode Matrices on the Performance of Amperometric Hydrogen Peroxide (Bio) Sensors. Electroanalysis 2022; 34: 1092-1102. https://doi.org/10.1002/elan.202100469
  • 30. Pourghobadi R, Baezzat MR. Alumina nanoparticles modified carbon paste electrode as a new voltammetric sensor for determination of dopamine. Quarterly Journal of Iranian Chemical Communication 2019; 7: 186-195. https://doi.org/10.30473/ICC.2018.4143
  • 31. Randviir EP, Banks CE. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods 2013; 5 (5): 1098-1115. https://doi.org/10.1039/C3AY26476
  • 32. Hussien EM, Rizk MS, Daoud AM, El Eryan RT. An Eco friendly Pencil Graphite Sensor for Voltammetric Analysis of the Antidepressant Vilazodone Hydrochloride. Electroanalysis 2022; 34. https://doi.org/10.1002/elan.202100457
  • 33. Nicholson RS, Shain I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Analytical Chemistry 1964; 36 (4): 706-723. https://doi.org/10.1021/ac60210a007
  • 34. Bilge S, Karadurmus L, Atici EB, Sınağ A, Ozkan SA. A novel electrochemical sensor based on magnetic Co3O4 nanoparticles/carbon recycled from waste sponges for sensitive determination of anticancer drug ruxolitinib. Sensors and Actuators B: Chemical 2022; 367: 132127. https://doi.org/10.1016/j.snb.2022.132127
  • 35. Němcová L, Zima J, Barek J. Determination of 5-amino-6-nitroquinoline at a carbon paste electrode. Collection of Czechoslovak Chemical Communications 2009; 74 (10): 1477-1488. https://doi.org/10.1135/cccc2009065
  • 36. Bukkitgar SD, Shetti NP, Reddy KR, Saleh TA, Aminabhavi TM. Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem 2020; 23: 100183.https://doi.org/10.1016/j.flatc.2020.100183
  • 37. Garrido JA, Rodriguez RM, Bastida RM, Brillas E. Study by cyclic voltammetry of a reversible surface charge transfer reaction when the reactant diffuses to the electrode. Journal of Electroanalytical Chemistry 1992; 324 (1-2): 19-32. https://doi.org/10.1016/0022- 0728(92)80033-Z
  • 38. Eriksson A, Nyholm L. A comparison of the electrochemical properties of some azosalicylic acids at glassy carbon electrodes by cyclic and hydrodynamic voltammetry. Electrochimica Acta 1999; 44 (23): 4029-4040. https://doi.org/10.1016/S0013-4686(99)00170-X
  • 39. Montoya MR, Mellado JR. A contribution to the elucidation of the reduction mechanism of thioisonicotinamide on mercury electrodes. Journal of Electroanalytical Chemistry 1996; 417 (1-2): 113-118. https://doi.org/10.1016/S0022-0728(96)04747-X
  • 40. Wang J. Analytical electrochemistry, New York, USA: Wiley, 10, 0471790303, 2006.
  • 41. Wang L, Zhang Z., Ye B. Study on the electrochemical behaviour of the anticancer herbal drug emodin. Electrochimica acta 2006; 51 (26): 5961-5965. https://doi.org/10.1016/j.electacta.2006.03.082
  • 42. Temerk Y, Ibrahim H, Schuhmann W. Simultaneous Anodic Adsorptive Stripping Voltammetric Determination of Luteolin and 3 Hydroxyflavone in Biological Fluids Using Renewable Pencil Graphite Electrodes. Electroanalysis 2019; 31 (6): 1095-1103. https://doi. org/10.1002/elan.201900066
  • 43. Hegde RN, Swamy BK, Sherigara BS, Nandibewoor ST. Electro-oxidation of atenolol at a glassy carbon electrode. International Journal of Electrochemical Science 2008; 3: 302-314.
  • 44. Hosseinian M, Najafpour G, Rajimpour A. Amperometric urea biosensor based on immobilized urease on polypyrrole and macroporous polypyrrole modified Pt electrode. Turkish Journal of Chemistry 2019; 43: 1063-1074. https://doi.org/10.3906/kim-1901-13
APA Öztürk F, YÜKSEL E, Erden P, kılıç e (2023). Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. , 126 - 136. 10.55730/1300-0527.3523
Chicago Öztürk Funda,YÜKSEL ELİF,Erden Pınar Esra,kılıç esma Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. (2023): 126 - 136. 10.55730/1300-0527.3523
MLA Öztürk Funda,YÜKSEL ELİF,Erden Pınar Esra,kılıç esma Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. , 2023, ss.126 - 136. 10.55730/1300-0527.3523
AMA Öztürk F,YÜKSEL E,Erden P,kılıç e Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. . 2023; 126 - 136. 10.55730/1300-0527.3523
Vancouver Öztürk F,YÜKSEL E,Erden P,kılıç e Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. . 2023; 126 - 136. 10.55730/1300-0527.3523
IEEE Öztürk F,YÜKSEL E,Erden P,kılıç e "Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode." , ss.126 - 136, 2023. 10.55730/1300-0527.3523
ISNAD Öztürk, Funda vd. "Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode". (2023), 126-136. https://doi.org/10.55730/1300-0527.3523
APA Öztürk F, YÜKSEL E, Erden P, kılıç e (2023). Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. Turkish Journal of Chemistry, 47(1), 126 - 136. 10.55730/1300-0527.3523
Chicago Öztürk Funda,YÜKSEL ELİF,Erden Pınar Esra,kılıç esma Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. Turkish Journal of Chemistry 47, no.1 (2023): 126 - 136. 10.55730/1300-0527.3523
MLA Öztürk Funda,YÜKSEL ELİF,Erden Pınar Esra,kılıç esma Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. Turkish Journal of Chemistry, vol.47, no.1, 2023, ss.126 - 136. 10.55730/1300-0527.3523
AMA Öztürk F,YÜKSEL E,Erden P,kılıç e Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. Turkish Journal of Chemistry. 2023; 47(1): 126 - 136. 10.55730/1300-0527.3523
Vancouver Öztürk F,YÜKSEL E,Erden P,kılıç e Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode. Turkish Journal of Chemistry. 2023; 47(1): 126 - 136. 10.55730/1300-0527.3523
IEEE Öztürk F,YÜKSEL E,Erden P,kılıç e "Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode." Turkish Journal of Chemistry, 47, ss.126 - 136, 2023. 10.55730/1300-0527.3523
ISNAD Öztürk, Funda vd. "Electrochemical determination of aripiprazole based on aluminium oxide nanoparticles modified carbon paste electrode". Turkish Journal of Chemistry 47/1 (2023), 126-136. https://doi.org/10.55730/1300-0527.3523