Yıl: 2023 Cilt: 47 Sayı: 1 Sayfa Aralığı: 185 - 195 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3528 İndeks Tarihi: 13-03-2023

Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization

Öz:
Polymer brushes are promising many applications as smart materials and biocompatible surfaces. Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization is one of the most effective techniques for synthesis of well-defined polymer brushes. Herein, a biocompatible, uniform and stable poly(N-acryloylmorpholine)-silicon hybrid system was achieved using surface-initiated RAFT polymerization. Evidence of a well-controlled surface-initiated RAFT polymerization was confirmed by a linear increase of number average molecular weight $(M_n)$ with overall monomer conversions. Water contact angle, ellipsometry, X-ray photoelectron spectroscopy and atomic force microscopy verified the presence of poly(N-acryloylmorpholine) (poly(NAM)) on silicon wafers. The grafting density (σ) and the average distance between grafting points (D) were estimated to be 0.58 $chains/nm^2$ and 1.5 nm, respectively. The ratio of D value to radius of gyration (Rg) value is smaller than 1 (D/2Rg < 1), which corresponds to the brush regime of all grafted poly(NAM) films.
Anahtar Kelime: Polymer brushes poly(N-acryloyl morpholine) surface-initiated RAFT polymerization

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bhayo AM, Yang Y, He X. Polymer brushes: Synthesis, characterization, properties and applications. Progress in Materials Science 2022; 130: 101000-101040. https://doi.org/10.1016/j.pmatsci.2022.101000
  • 2. Chen WL, Cordero R, Tran H, Ober CK. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials. Macromolecules 2017; 50 (11): 4089 -113. https://doi.org/10.1021/acs.macromol.7b00450
  • 3. Wang S, Wang Z, Li J, Li L. Hu W. Surface-grafting polymers: from chemistry to organic electronics. Materials Chemistry Frontiers 2020; 4: 692-714. https://doi.org/10.1039/C9QM00450E
  • 4. Mocny P, Klok HA. Complex polymer topologies and polymer - nanoparticle hybrid films prepared via surface - initiated controlled radical polymerization. Progress in Polymer Science 2020; 100: 101185-101202. https://doi.org/10.1016/j.progpolymsci.2019.101185
  • 5. Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K et al. Progress and perspectives beyond traditional RAFT polymerization. Advanced Science 2020; 7 (20): 2001656-2001668. https://doi.org/10.1002/advs.202001656
  • 6. Zhou J, Yao H, Ma J. Recent advances in RAFT - mediated surfactant - free emulsion polymerization. Polymer Chemistry 2018; 9 (19): 2532–2561. https://doi. org/10.1039/C8PY00065D
  • 7. Cho MK, Seo HJ, Lee JH, Cho WK, Son K. Polymer brush growth by oxygen - initiated RAFT polymerization on various substrates. Polymer Chemistry 2021; 12: 7023-7030. doi: 10.1039/D1PY01195B
  • 8. Jo YS, van der Vlies AJ, Gantz J, Antonijevic S, Demurta D et al. RAFT Homo- and Copolymerization of N-Acryloyl - morpholine, Piperidine and Azocane and Their Self-Assembled Structures. Macromolecules 2008; 41 (4): 1140-1150. https://doi.org/10.1021/ ma071710t
  • 9. Gurbuz N, Demirci S, Yavuz S, Caykara T. Synthesis of cationic N-[3-(dimethylamino) propyl] methacrylamide brushes on silicon wafer via surface - initiated RAFT polymerization. Journal Polymer Science Part A: Polymer Chemistry 2011; 49: 423-431. https://doi. org/10.1002/pola.24454
  • 10. Moad CL, Moad G. Fundamentals of reversible addition - fragmentation chain transfer (RAFT). Chemistry Teacher International 2021; 3 (2): 3–17. https://doi.org/10.1515/cti-2020-0026
  • 11. Tilottama B, Manojkumar K, Haribabu PM, Vijayakrishna K. A short review on RAFT polymerization of less activated monomers. Journal of Macromolecular Science, Part A: Pure And Applied Chemistry 2022; 59 (3): 180–201. https://doi.org/10.1080/10601325.2021.2024076
  • 12. Chunzhao L, Junwon H, Chang RY, Brian CB. A Versatile Method To Prepare RAFT Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles. Macromolecules 2006; 39: 3175-3183. https://doi.org/10.1021/ma051983t
  • 13. Sieval AB, Linke R, Zuilhof H, Sudholter EJR. High-Quality Alkyl Monolayers on Silicon Surfaces. Advanced Materials 2000; 12 (19): 1457-1460. https://doi.org/10.1002/1521-4095(200010)12:19<1457::AID-ADMA1457>3.0.CO;2-%23
  • 14. Bian H, Dong X, Chen S, Dong D, Zhang N. Polymer brushes on hydrogen-terminated silicon substrates via stable Si - C bond. Chinese Chemical Letters 2018; 29: 171-174. https://doi.org/10.1016/j.cclet.2017.05.011
  • 15. Yuan S, Zhang H, Yuan S. Atomistic insights into resistance to oxidation of Si (111) grafted different organic chains. Computational Materials Science 2021; 191: 110336-110344. https://doi.org/10.1016/j.commatsci.2021.110336
  • 16. Sartore L, Peroni I, Ferruti P, Latini, Bernasconi R. Synthesis and pharmacokinetic behavior of ester derivatives of 4-isobutylphenyl-2- propionic acid (Ibuprofen) with end - hydroxylated poly(N-vinyl pyrrolidinone) and poly(N - acryloyl morpholine) oligomers. Journal of Biomaterials Science, Polymer Edition 1997; 8: 741-754. https://doi.org/10.1163/156856297X00281
  • 17. D’Agosto F, Hughes R, Charreyre MT, Pichot C, Gilbert RG. Molecular Weight and Functional End Group Control by RAFT Polymerization of a Bisubstituted Acrylamide Derivative. Macromolecules 2002; 36 (3): 621-629. https://doi.org/10.1021/ma025646l
  • 18. Caliceti P, Schiavon O, Veronese FM, Immunological Properties of Uricase Conjugated to Neutral Soluble Polymers. Bioconjugate Chemistry 2001; 12 (4): 515-522. https://doi.org/10.1021/bc000119x
  • 19. Torchilin VP, Trubetskoy VS, Whiteman KR, Caliceti P, Ferruti P, Veronese FMJ. New Synthetic Amphiphilic Polymers for Steric Protection of Liposomes in Vivo. Journal of Pharmarmaceutial Sciences 1995; 84 (9): 1049–1053. https://doi.org/10.1002/jps.2600840904
  • 20. Torchilin VP, Shtilman ML, Trubetskoy VS, Whiteman KK, Milstein AM. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochimica et Biophysica Acta 1994; 1195 (1): 181-184. https://doi.org/10.1016/0005-2736(94)90025-6
  • 21. Chen Q, He Y, Zhao Y, Chen L. Tannic acid and Poly(N-acryloyl morpholine) layer-by - layer built hemodialysis membrane surface for intervening oxidative stress integrated with high biocompatibility and dialysis performance. Journal of Membran Science 2021; 621, 118896-118910. https://doi.org/10.1016/j.memsci.2020.118896
  • 22. Fare MM, Al-Shbou AM. Stimuli pH-responsive (N-vinyl imidazole-co-acryloylmorpholine) Hydrogels; Mesoporous and Nanoporous Scaffolds. Journal of Biomedical Materials Research Part A 2012; 100A (4): 863-871. https://doi.org/10.1002/jbm.a.33304
  • 23. Takahashi H, Nakayama M, Itoga K, Yamato M, Okano T. Micropatterned Thermoresponsive Polymer Brush Surfaces for Fabricating Cell Sheets with Well-Controlled Orientational Structures. Biomacromolecules 2011; 12 (5): 1414-1418. https://doi.org/10.1021/bm2000956
  • 24. Ranucci E, Spagnoli G, Sartore L, Ferruti P, Caliceti P et al. Synthesis and molecular weight characterization of low molecular weight end- functionalized poly(N-acryloylmorpholine. Macromolecular Chemistry and Physics 1994; 195 (10): 3469-3479. https://doi.org/10.1002/ macp.1994.021951015
  • 25. Favier A, Charreyre MT, Chaumont P, Pichot C. Study of the RAFT Polymerization of a Water-Soluble Bisubstituted Acrylamide Derivative. 1. Influence of the Dithioester Structure Macromolecules 2002; 35 (22): 8271-8280. https://doi.org/10.1021/ma020550c
  • 26. Oberhansl S, Hirtz M, Lagunas A, Eritja R, Martinez E et al. Facile Modification of Silica Substrates Provides a Platform for Direct- Writing Surface Click Chemistry Small 2012; 8 (4): 541-545. https://doi.org/10.1002/smll.201101875
  • 27. Biesalski M, Rühe J, Johannsmann DJ. Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry. Journal of Chemical Physics 1999; 111: 7029-7037. https://doi.org/10.1063/1.480019
  • 28. Harrisson S, Wooley KL. Shell-crosslinked micelles from amphiphilic AB and ABA block copolymers of styrenealt-(maleic anhydride) and styrene: polymerization, assembly and stabilization in one pot. Chemistry Communication 2005; 3259-3261. https://doi.org/10.1039/ B504313A
  • 29. Rungta A, Natarajan B, Neely T, Dukes D, Schadler LS, Benicewicz BC. Grafting bimodal polymer brushes on nanoparticles using controlled radical polymerization Macromolecules, 2012; 45 (23): 9303-9311. https://doi.org/10.1021/ma3018876
  • 30. Barsbay M, Güven O, Stenzel MH, Davis TP, Kowollik CB, Barner L. Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization. Macromolecules 2007; 40 (20): 7140–7147. https://doi.org/10.1021/ma070825u
  • 31. Turan E, Demirci S, Caykara T. Synthesis of Thermoresponsive Poly(N-Isopropylacrylamide) brush on silicon wafer surface via atom transfer radical polymerization. Thin Solid Films 2010; 518 (21): 5950–5954. https://doi.org/10.1016/j.tsf.2010.05.103
  • 32. Kang C, Crockett MR, Spencer ND. Molecular-weight determination of polymer brushes generated by SI-atrp on flat surfaces. Macromolecules 2014; 47 (1): 269-275. https://doi.org/10.1021/ma401951w
  • 33. Matyjaszewski K. Controlled/living radical polymerization: progress in ATRP. American Chemical Society, Washington, 2009.
  • 34. D’Agosto F, Charreyre MT, Veron L, Llauro MF, Pichoti C. Kinetic Study of Free-Radical Solution Copolymerization of N-Acryloylmorpholine with an Activated Ester-Type Monomer, N-Acryloxysuccinimide. Macromolecular Chemistry and Physics 2011; 202 (9): 1689-1699. https://doi.org/10.1002/1521-3935(20010601)202:9<1689::AID-MACP1689>3.0.CO;2-P
  • 35. Bamford CH, Barb WG, Jenkins AD, Onyon PF. The kinetics of vinyl polymerization by radical mechanisms Academic Press, New York, 1958.
  • 36. Ganjeh-Anzabi P, Haddadi-Asl V, Salami- Kalajahi M, Abdollahi M. Kinetic investigation of the reversible addition-fragmentation chain transfer polymerization of 1,3-butadiene. Journal of Polymer Research. 2013; 20: 248-250. https://doi.org/10.1007/s10965-013-0248-8
  • 37. Kitano H, Liu Y, Tokuwa K, Li L, Iwanaga S et al. Polymer brush with pendent glucosylurea groups constructed on a glass substrate by RAFT polymerization. European Polymer Journal. 2012; 48: 1875-1882. https://doi.org/10.1016/j.eurpolymj.2012.08.011
  • 38. Wagner CD. Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy. Perkin-Elmer, 1979.
  • 39. Demirci S, Çaykara T. Controlled grafting of cationic poly[(arvinylbenzyl) trimethylammoniumchloride] on hydrogen-terminated silicon substrate by surface-initiated RAFT polymerization. Reactive and Functional Polymers 2012; 72: 588-595. https://doi.org/10.1016/j. reactfunctpolym.2012.06.005
  • 40. Backmann N, Kappeler N, Braun T, Francois H, Lang HP et al. Sensing surface PEGylation with microcantilevers Beilstein Journal of. Nanotechnology 2010; 1: 3-13. https://doi.org/10.3762/bjnano.1.2
APA MUTLUTÜRK E, Caykara T (2023). Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. , 185 - 195. 10.55730/1300-0527.3528
Chicago MUTLUTÜRK ESMA,Caykara Tuncer Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. (2023): 185 - 195. 10.55730/1300-0527.3528
MLA MUTLUTÜRK ESMA,Caykara Tuncer Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. , 2023, ss.185 - 195. 10.55730/1300-0527.3528
AMA MUTLUTÜRK E,Caykara T Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. . 2023; 185 - 195. 10.55730/1300-0527.3528
Vancouver MUTLUTÜRK E,Caykara T Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. . 2023; 185 - 195. 10.55730/1300-0527.3528
IEEE MUTLUTÜRK E,Caykara T "Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization." , ss.185 - 195, 2023. 10.55730/1300-0527.3528
ISNAD MUTLUTÜRK, ESMA - Caykara, Tuncer. "Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization". (2023), 185-195. https://doi.org/10.55730/1300-0527.3528
APA MUTLUTÜRK E, Caykara T (2023). Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. Turkish Journal of Chemistry, 47(1), 185 - 195. 10.55730/1300-0527.3528
Chicago MUTLUTÜRK ESMA,Caykara Tuncer Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. Turkish Journal of Chemistry 47, no.1 (2023): 185 - 195. 10.55730/1300-0527.3528
MLA MUTLUTÜRK ESMA,Caykara Tuncer Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. Turkish Journal of Chemistry, vol.47, no.1, 2023, ss.185 - 195. 10.55730/1300-0527.3528
AMA MUTLUTÜRK E,Caykara T Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. Turkish Journal of Chemistry. 2023; 47(1): 185 - 195. 10.55730/1300-0527.3528
Vancouver MUTLUTÜRK E,Caykara T Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization. Turkish Journal of Chemistry. 2023; 47(1): 185 - 195. 10.55730/1300-0527.3528
IEEE MUTLUTÜRK E,Caykara T "Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization." Turkish Journal of Chemistry, 47, ss.185 - 195, 2023. 10.55730/1300-0527.3528
ISNAD MUTLUTÜRK, ESMA - Caykara, Tuncer. "Synthesis and kinetic analysis of poly(N-acryloylmorpholine) brushes via surface initiated RAFT polymerization". Turkish Journal of Chemistry 47/1 (2023), 185-195. https://doi.org/10.55730/1300-0527.3528