Yıl: 2023 Cilt: 47 Sayı: 1 Sayfa Aralığı: 253 - 262 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3534 İndeks Tarihi: 13-03-2023

On chip microfluidic separation of cyclotides

Öz:
Cyclotides as a cyclic peptide produced by different groups of plants have been a very attractive field of research due to their exceptional properties in biological activities and drug design applications. The importance of cyclotides as new biological activities from nature caused to attract researchers to develop new separation systems. Recent growth and development on chip-based technology for separation and bioassay especially for anticancer having sparklingly advantages comparison with common traditional methods. In this study, the microfluidic separation of Vigno 1-5 cyclotides extracted from Viola ignobilis by using polar and nonpolar forces as a liquid-liquid interaction was investigated through modified microfluidic chips and then the results were compared with a traditional counterpart technique of high-performance liquid chromatography (HPLC). The traditional process of separating cyclotides from plants is a costly and time-consuming procedure. The scientific novelty of this study is to accelerate the separation of cyclotides using modified microfluidic chips with low cost and high efficiency. The results revealed that a novel and simple microfluidic chip concept is an effective approach for separating the Vigno groups in the violet extract. We believe that the concept could potentially be utilized for further drug development process especially for anticancer studies by coupling bioassay chips as online procedures via reducing in time and cost compared with traditional offline methods.
Anahtar Kelime: Microfluidic separation cyclotide Viola ignobilis Vigno 5 liquid-liquid extraction

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Craik DJ, Daly NL, Bond T, Waine C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. Journal of Molecular Biology 1999; 294(5): 1327-36. https://doi.org/10.1006/jmbi.1999.3383
  • 2. Colgrave ML, Craik DJ. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 2004; 43 (20): 5965-75. https://doi.org/10.1021/bi049711q
  • 3. Huang YH, Henriques ST, Wang CK, Thorstholm L, Daly NL et al. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Scientific Reports 2015; 5: 12974. https://doi.org/10.1038/srep12974
  • 4. Huang YH, Chaousis S, Cheneval O, Craik DJ, Henriques ST. Optimization of the cyclotide framework to improve cell penetration properties. Frontiers in Pharmacology 2015; 6: 17. https://doi.org/10.3389/fphar.2015.00017
  • 5. Henriques ST, Huang YH, Chaousis S, Sani MA, Poth AG et al. The Prototypic Cyclotide Kalata B1 Has a Unique Mechanism of Entering Cells. Chem Biol 2015; 22 (8): 1087-97. https://doi.org/10.1016/j.chembiol.2015.07.012
  • 6. Koehbach J, O’Brien M, Muttenthaler M, Miazzo M, Akcan M et al. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design. National Academy of Sciences 2013; 110 (52): 21183-8. https://doi.org/10.1073/pnas.1311183110
  • 7. Hashempour H, Ghassempour A, Daly NL, Spengler B, Rompp A. Analysis of cyclotides in Viola ignobilis by Nano liquid chromatography fourier transform mass spectrometry. Protein and Peptide Letters 2011; 18 (7): 747-52. https://doi.org/10.2174/092986611795446030.
  • 8. Craik DJ, Swedberg JE, Mylne JS, Cemazar M. Cyclotides as a basis for drug design. Expert Opinion on Drug Discovery 2012; 7 (3): 179-94. 10.1517/17460441.2012.661554
  • 9. Bremer B, Eriksson T. Time Tree of Rubiaceae: Phylogeny and Dating the Family, Subfamilies, and Tribes. International Journal of Plant Sciences 2009; 1 70 (6): 766-93. https://doi.org/10.1086/599077
  • 10. Robbrecht E, Manen JF. The Major Evolutionary Lineages of the Coffee Family (Rubiaceae, Angiosperms). Combined Analysis (nDNA and cpDNA) to Infer the Position of Coptosapelta and Luculia, and Supertree Construction Based on rbcL, rps16, trnL-trnF and atpB-rbcL Data. A New Classification in Two Subfamilies, Cinchonoideae and Rubioideae. Systematics and Geography of Plants 2006; 76 (1): 85-146. https://doi.org/10.2307/20649700
  • 11. Simonsen SM, Sando L, Ireland DC, Colgrave ML, Bharathi R et al. A continent of plant defense peptide diversity: cyclotides in Australian Hybanthus (Violaceae). Plant Cell 2005; 17 (11): 3176-89. https://doi.org/10.1105/tpc.105.034678.
  • 12. Broussalis AM, Goransson U, Coussio JD, Ferraro G, Martino V et al. First cyclotide from Hybanthus (Violaceae). Phytochemistry 2001; 58 (1): 47-51. https://doi.org/10.1016/s0031-9422(01)00173-x
  • 13. Wang CK, Colgrave ML, Gustafson KR, Ireland DC, Goransson U, Craik DJ. Anti-HIV cyclotides from the Chinese medicinal herb Viola yedoensis. Journal of natural products 2008; 71 (1): 47-52. https://doi.org/10.1021/np070393g
  • 14. Burman R, Gruber CW, Rizzardi K, Herrmann A, Craik DJ et al. Cyclotide proteins and precursors from the genus Gloeospermum: filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 2010; 71 (1): 13-20. https://doi.org/10.1016/j.phytochem.2009.09.023
  • 15. Attah AF, Hellinger R, Sonibare MA, Moody JO, Arrowsmith S et al. Ethnobotanical survey of Rinorea dentata (Violaceae) used in South- Western Nigerian ethnomedicine and detection of cyclotides. Journal of Ethnopharmacology 2016; 179: 83-91. https://doi.org/10.1016/j. jep.2015.12.038
  • 16. Hashempour H, Koehbach J, Daly NL, Ghassempour A, Gruber CW. Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry. Amino Acids 2013; 44 (2): 581-95. https://doi. org/10.1007/s00726-012-1376-x
  • 17. Avci H, Ghorbanpoor H, Nurbas M. Preparation of origanum minutiflorum oil-loaded core-shell structured chitosan nanofibers with tunable properties. Polymer Bulletin 2018; 75 (9): 4129-44. https://doi.org/10.1007/s00289-017-2257-y
  • 18. Avci H, Akkulak E, Gergeroglu H, Ghorbanpoor H, Uysal O et al. Flexible poly(styrene-ethylene-butadiene-styrene) hybrid nanofibers for bioengineering and water filtration applications. Journal of Applied Polymer Science 2020; e49184. https://doi.org/10.1002/app.49184
  • 19. Avci H, Monticello R, Kotek R. Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. Journal of Biomaterials Science, Polymer Edition 2013; 24 (16): 1815-30. https://doi.org/10.1080/09205063.2013.804758
  • 20. Avci H, Gergeroglu H. Synergistic efects of plant extracts and polymers on structural and antibacterial properties for wound healing. Polymer Bulletin 2019; 76: 3709–31. https://doi.org/10.1007/s00289-018-2578-5
  • 21. Nurbas M, Ghorbanpoor H, Avci H. An Eco-Friendly Approach to Synthesis and Characterization of Magnetite (Fe3O4) Nanoparticles Using Platanus Orientalis L. Leaf Extract. Digest Journal of Nanomaterials and Biostructures 2017; 12 (4): 993 -1000.
  • 22. Gergeroglu H, Avcı H. Functional Composite Nanofibers Derived from Natural Extract of Satureja Hortensis. Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering 2017; 18 (5): 908 - 18. https://doi.org/10.18038/aubtda.339963
  • 23. Thell K, Hellinger R, Sahin E, Michenthaler P, Gold-Binder M et al. Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proceedings of the National Academy of Sciences 2016; 113 (15): 3960-5. https://doi.org/10.1073/pnas.1519960113
  • 24. Gründemman C, Stenberg KG, Gruber CW. T20K: An Immunomodulatory Cyclotide on Its Way to the Clinic. International Journal of Peptide Research and Therapeutics 2019; 25: 9-13. https://doi.org/10.1007/s10989-018-9701-1.
  • 25. Mehta L, Dhankhar R, Gulati P, Kapoor RK, Mohanty A, Kumar S. Natural and grafted cyclotides in cancer therapy: An insight. Journal of Peptide Science 2020; 26 (4-5): e3246. https://doi.org/10.1002/psc.3246
  • 26. Figeys D. Pinto D. Lab-on-a-chip: A revolution in biological and medical sciences. Analytical Chemistry 2000; 72 (9): 330a-335a. https:// doi.org/10.1021/ac002800y.
  • 27. Nagl S, Schulze P, Ohla S., Beyreiss R, Gitlin L et al. Microfluidic chips for chirality exploration. Analytical Chemistry 2011; 83 (9): 3232- 3238. https://doi.org/10.1021/ac200150w
  • 28. Liu X, Ying G, Liao X, Sun C, Wei F et al. Cytometric Microbead Magnetic Suspension Array for High-Throughput Ultrasensitive Detection of Aflatoxin B1. Analytical Chemistry 2019; 91 (1): 1194-1202. https://doi.org/10.1021/acs.analchem.8b05278
  • 29. Tani H, Maehana K, Kamidate T. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Analytical Chemistry 2004; 76 (22): 6693-6697. https://doi.org/10.1021/ac049401d
  • 30. Tsougeni K, Zerefos P, Tserepi, A, Vlahou A, Garbis SD et al. TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation. Lab Chip 2011; 11 (18): 3113-20. doi.org/10.1039/C1LC20133F
  • 31. De Vos J, Dams M, Broeckhoven K, Desmet G, Horstkotte B et al. Prototyping of a Microfluidic Modulator Chip and Its Application in Heart-Cut Strong-Cation-Exchange-Reversed-Phase Liquid Chromatography Coupled to Nanoelectrospray Mass Spectrometry for Targeted Proteomics. Analytical Biochemistry 2020; 92 (3): 2388-2392. https://doi.org/10.1021/acs.analchem.9b05141
  • 32. Millet LJ, Lucheon JD, Standaert RF, Retterer ST, Doktycz MJ. Modular microfluidics for point-of-care protein purifications. Lab Chip 2015: 15 (8); 1799-811. https://doi.org/10.1039/C5LC00094G
  • 33. Duan L, Yobas L. On-chip hydrodynamic chromatography of DNA through centimeters-long glass nanocapillaries. Analyst 2017: 142 (12); 2191-2198. https://doi.org/10.1039/C7AN00499K
  • 34. Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. Journal of Pharmaceutical Analysis 2019; 9 (4): 238-247. https://doi.org/10.1016/j.jpha.2018.12.001
  • 35. Gale BK, Jafek AR, Lambert CJ, Goenner BL, Moghimifam H et al. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018; 3 (3). https://doi.org/10.3390/inventions3030060
  • 36. Streets AM, Huang YY. Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics 2013; 7 (1). https://doi. org/10.1049/mnl.2018.5206
  • 37. Pompach P, Benada O, Rosůlek M, Darebná P, Hausner J et al. Protein Chips Compatible with MALDI Mass Spectrometry Prepared by Ambient Ion Landing. Analytical Chemistry 2016; 88 (17): 8526-8534. https://doi.org/10.1021/acs.analchem.6b01366
  • 38. Moharrami S, Hashempour H. Comparative study of low-voltage electric field-induced, ultrasound-assisted and maceration extraction of phenolic acids. Journal of Pharmaceutical and Biomedical Analysis 2021; 202. https://doi.org/10.1016/j.jpba.2021.114149
  • 39. Güzel FD, Miles BN. Development of in-flow label-free single molecule sensors using planar soli„ state nanopore integrated microfluidic devices. Micro & Nano Letters 2018; 13 (9): 1352-1357. https://doi.org/10.1049/mnl.2018.5206
  • 40. Ghorbanpoor H, Corrigan D, Guzel FD. Effect of microchannel dimensions in electrochemical impedance spectroscopy using gold microelectrode. Sakarya University Journal of Science 2022; 26 (1): 119-126. https://doi.org/10.16984/saufenbilder.982707
  • 41. Kaur J, Ghorbanpoor H, Öztürk Y, Kaygusuz Ö, Avcı H et al. On chip label free impedance based detection of antibiotic permeation. IET Nanobiotechnology 2021; 15 (1): p. 100-106. https://doi.org/10.1049/nbt2.12019
  • 42. Ghorbanpoor H, Dizaji AN, Akcakoca I, Blair EO, Ozturk Y et al. A fully integrated rapid on-chip antibiotic susceptibility test–A case study for Mycobacterium smegmatis. Sensors and Actuators A: Physical 2022; 339: 113515. https://doi.org/10.1016/j.sna.2022.113515
  • 43. Didarian R, Ebrahimi A, Ghorbanpoor H, Dizaji AN, Hashempour H et al. Investigation of Polar and Nonpolar Cyclotides Separation from Violet Extract Through Microfluidic Chip. 8. International Fiber and Polymer Research Symposium 18-19 June 2021.
  • 44. Özel C, Koç Y, Topal AE, Ebrahimi A, Şengel T et al. Investigation of Mesenchymal cells in the Microfluidic Cell Culture Device. 8. International Fiber and Polymer Research Symposium 18-19 June 2021.
  • 45. Özel C, Koç Y, Topal AE, Ebrahimi A, Şengel T et al. Investigation of 3D Culture of Human Adipose Tissue-Derived Mesenchymal Stem Cells in a Microfluidic Platform. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering 2021; 22: 85-97. https://doi.org/10.18038/estubtda.983881
  • 46. Tetala KK, Swarts JW, Chen B, Janssen AE, Van Beek, TA. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab Chip 2009; 9 (14): 2085-92. https://doi.org/10.1039/B822106E.
  • 47. Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S et al. Distribution and Evolution of Circular Miniproteins in Flowering Plants. Plant Cell 2008; 20 (9): 2471-2483. https://doi.org/10.1105/tpc.108.062331
  • 48. Zhang YS, Aleman J, Shin SR, Kilic T, Kim D et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proceedings of the National Academy of Sciences 2017; 114 (12): E2293-E2302. https://doi.org/10.1073/ pnas.1612906114
  • 49. Shin SR, Zhang YS, Kim DJ, Manbohi A, Avci H et al. Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Anal Chem 2016; 88 (20): 10019-10027. https://doi.org/10.1021/acs.analchem.6b02028
  • 50. Shin SR, Kilic T, Zhang YS, Avci H, Hu N et al. Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes. Advanced Science 2017; 4 (5): 1600522. https://doi.org/ 10.1002/advs.201600522
  • 51. Avci H, Güzel FD, Erol S, Akpek A. Recent advances in organ-on-a-chip technologies and future challenges: a review. Turkish Journal of Chemistry 2018; 42: 587–610. https://doi.org/10.3906/kim-1611-35
  • 52. Weidmann J, Craik DJ. Discovery, structure, function, and applications of cyclotides: circular proteins from plants. Journal of Experimental Botany 2016; 67 (16): 4801-4812. https://doi.org/10.1093/jxb/erw210
  • 53 Farhadpour M, Hashempour H, Talebpour Z, Nazanin A, Shushtarian MS et al. Microwave-assisted extraction of cyclotides from Viola ignobilis. Analytical Biochemistry 2016; 497: 83-89. https://doi.org/10.1016/j.ab.2015.12.001
APA Didarian R, EBRAHIMI A, Ghorbanpoor H, Bagheroghli H, Doğan Güzel F, faradpour m, Lotfibakhshaiesh N, Hashempour H, Avci H (2023). On chip microfluidic separation of cyclotides. , 253 - 262. 10.55730/1300-0527.3534
Chicago Didarian Reza,EBRAHIMI Aliakbar,Ghorbanpoor Hamed,Bagheroghli Hessam,Doğan Güzel Fatma,faradpour mohsen,Lotfibakhshaiesh Nasrin,Hashempour Hossein,Avci Huseyin On chip microfluidic separation of cyclotides. (2023): 253 - 262. 10.55730/1300-0527.3534
MLA Didarian Reza,EBRAHIMI Aliakbar,Ghorbanpoor Hamed,Bagheroghli Hessam,Doğan Güzel Fatma,faradpour mohsen,Lotfibakhshaiesh Nasrin,Hashempour Hossein,Avci Huseyin On chip microfluidic separation of cyclotides. , 2023, ss.253 - 262. 10.55730/1300-0527.3534
AMA Didarian R,EBRAHIMI A,Ghorbanpoor H,Bagheroghli H,Doğan Güzel F,faradpour m,Lotfibakhshaiesh N,Hashempour H,Avci H On chip microfluidic separation of cyclotides. . 2023; 253 - 262. 10.55730/1300-0527.3534
Vancouver Didarian R,EBRAHIMI A,Ghorbanpoor H,Bagheroghli H,Doğan Güzel F,faradpour m,Lotfibakhshaiesh N,Hashempour H,Avci H On chip microfluidic separation of cyclotides. . 2023; 253 - 262. 10.55730/1300-0527.3534
IEEE Didarian R,EBRAHIMI A,Ghorbanpoor H,Bagheroghli H,Doğan Güzel F,faradpour m,Lotfibakhshaiesh N,Hashempour H,Avci H "On chip microfluidic separation of cyclotides." , ss.253 - 262, 2023. 10.55730/1300-0527.3534
ISNAD Didarian, Reza vd. "On chip microfluidic separation of cyclotides". (2023), 253-262. https://doi.org/10.55730/1300-0527.3534
APA Didarian R, EBRAHIMI A, Ghorbanpoor H, Bagheroghli H, Doğan Güzel F, faradpour m, Lotfibakhshaiesh N, Hashempour H, Avci H (2023). On chip microfluidic separation of cyclotides. Turkish Journal of Chemistry, 47(1), 253 - 262. 10.55730/1300-0527.3534
Chicago Didarian Reza,EBRAHIMI Aliakbar,Ghorbanpoor Hamed,Bagheroghli Hessam,Doğan Güzel Fatma,faradpour mohsen,Lotfibakhshaiesh Nasrin,Hashempour Hossein,Avci Huseyin On chip microfluidic separation of cyclotides. Turkish Journal of Chemistry 47, no.1 (2023): 253 - 262. 10.55730/1300-0527.3534
MLA Didarian Reza,EBRAHIMI Aliakbar,Ghorbanpoor Hamed,Bagheroghli Hessam,Doğan Güzel Fatma,faradpour mohsen,Lotfibakhshaiesh Nasrin,Hashempour Hossein,Avci Huseyin On chip microfluidic separation of cyclotides. Turkish Journal of Chemistry, vol.47, no.1, 2023, ss.253 - 262. 10.55730/1300-0527.3534
AMA Didarian R,EBRAHIMI A,Ghorbanpoor H,Bagheroghli H,Doğan Güzel F,faradpour m,Lotfibakhshaiesh N,Hashempour H,Avci H On chip microfluidic separation of cyclotides. Turkish Journal of Chemistry. 2023; 47(1): 253 - 262. 10.55730/1300-0527.3534
Vancouver Didarian R,EBRAHIMI A,Ghorbanpoor H,Bagheroghli H,Doğan Güzel F,faradpour m,Lotfibakhshaiesh N,Hashempour H,Avci H On chip microfluidic separation of cyclotides. Turkish Journal of Chemistry. 2023; 47(1): 253 - 262. 10.55730/1300-0527.3534
IEEE Didarian R,EBRAHIMI A,Ghorbanpoor H,Bagheroghli H,Doğan Güzel F,faradpour m,Lotfibakhshaiesh N,Hashempour H,Avci H "On chip microfluidic separation of cyclotides." Turkish Journal of Chemistry, 47, ss.253 - 262, 2023. 10.55730/1300-0527.3534
ISNAD Didarian, Reza vd. "On chip microfluidic separation of cyclotides". Turkish Journal of Chemistry 47/1 (2023), 253-262. https://doi.org/10.55730/1300-0527.3534