Yıl: 2023 Cilt: 47 Sayı: 1 Sayfa Aralığı: 280 - 293 Metin Dili: İngilizce DOI: 10.55730/1300-0527.3536 İndeks Tarihi: 13-03-2023

Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies

Öz:
Bis(4-(4-nitrobenzyl)pyridine)dichloropalladium(II), $[PdCl_2L^1_{2}]$, bis(2-amino-5-bromopyridine)dichloropalladium(II), $[PdCl_2L^2_{2}]$, bis(2,4-dimethylpyridine)dichloropalladium(II), $[PdCl_2L^3_{2}]$, bis(3,4-dimethylpyridine)dichloropalladium(II), $[PdCl_2L^4_{2}]$were prepared. The spectroscopic techniques (FT-IR and $^1H-NMR, ^{13}C-NMR)$ were used to characterize the compounds. Theoretical calculations were used to validate the experimental results. The LanL2DZ-based DFT/B3LYP method was used to define the most stable possible molecular structure for the complexes. Potential energy distribution analysis was performed to determine the theoretical vibration bands of the complexes. Molecular electrostatic potential maps, boundary molecular orbitals and Mulliken charge distribution were used to determine the active sites of the molecules. The interaction mechanisms between the complexes and liver cancer protein were investigated via molecular docking. The study on the antiproliferative effects of these complexes on hepatocellular carcinoma cells (HepG2) showed that they are potent candidates for use against this liver cancer cell line.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Kocyigit UM, Budak Y, Gürdere MB, Tekin Ş, Köprülü TK et al. Synthesis, characterization, anticancer, antimicrobial and carbonic anhydrase inhibition profiles of novel (3aR, 4S, 7R, 7aS)-2-(4-((E)-3-(3-aryl) acryloyl) phenyl)-3a, 4, 7, 7a-tetrahydro-1H-4, 7-methanoisoindole-1, 3 (2H)-dione derivatives. Bioorganic Chemistry 2017; 70: 118-125.
  • 2. Dastan T, Kocyigit UM, Durna Dastan S, Canturk Kilickaya P, Taslimi P et al. Investigation of acetylcholinesterase and mammalian DNA topoisomerases, carbonic anhydrase inhibition profiles, and cytotoxic activity of novel bis (α aminoalkyl) phosphinic acid derivatives against human breast cancer. Journal of Biochemical and Molecular Toxicology, 2017; 31 (11): e21971.
  • 3. Global Cancer Observatory. Accessed August 25, 2020. https://gco.iarc.fr/
  • 4. Kumar V, Abbas AK, Aster JC. Robbins and Cotran Pathologic Basis of Disease. Saunders; 2015. Accessed December 29, 2021. http://vlib. kmu.ac.ir/kmu/handle/kmu/87089
  • 5. Global Cancer Observatory. Accessed December 29, 2021. https://gco.iarc.fr/
  • 6. Morales-Cruz M, Delgado Y, Castillo B et al. Smart targeting to improve cancer therapeutics. Drug Design, Development and Therapy 2019; 13: 3753-3772. https://doi.org/10.2147/DDDT.S219489
  • 7. Lewandowska AM, Lewandowski T, Rudzki M, Rudzki S, Laskowska B. Cancer prevention – review paper. Annals of Agricultural and Environmental Medicine 2021; 28 (1): 11-19. https://doi.org/10.26444/AAEM/116906
  • 8. Nakashima L. Evolution of cancer treatment and evolving challenges. Healthcare Management Forum 2018; 31 (1): 26-28. https://doi. org/10.1177/0840470417722568
  • 9. Mollaei M, Hassan ZM, Khorshidi F, Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Translational Oncology 2021; 14 (5): 101056. https://doi.org/10.1016/J.TRANON.2021.101056
  • 10. Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – An update from drug design perspective. Drug Design, Development and Therapy 2017; 11: 599-616. https://doi.org/10.2147/DDDT.S119488
  • 11. Simpson P V., Desai NM, Casari I, Massi M, Falasca M. Metal-based antitumor compounds: beyond cisplatin. Future Medicinal Chemistry 2019; 11 (2): 119-135. https://doi.org/10.4155/FMC-2018-0248
  • 12. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coordination Chemistry Reviews 2016; 310: 41-79. https://doi.org/10.1016/J.CCR.2015.11.004
  • 13. Carneiro TJ, Martins AS, Marques MPM, Gil AM. Metabolic aspects of palladium(II) potential anti-cancer drugs. Frontiers in Oncology 2020; 10. https://doi.org/10.3389/FONC.2020.590970
  • 14. Kapdi AR, Fairlamb IJS. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chemical Society Reviews 2014; 43 (13): 4751-4777. https://doi.org/10.1039/C4CS00063C
  • 15. Boopalachandran P, Sheu HL, Laane J. Vibrational spectra, structure, and theoretical calculations of 2-chloro- and 3-chloropyridine and 2-bromo- and 3-bromopyridine. Journal of Molecular Structure 2012; 1023: 61-67. https://doi.org/10.1016/J.MOLSTRUC.2012.03.031
  • 16. Mock C, Puscasu I, Rauterkus MJ, Tallen G, Wolff JEA et al. Novel Pt(II) anticancer agents and their Pd(II) analogues: syntheses, crystal structures, reactions with nucleobases and cytotoxicities. Inorganica Chimica Acta 2001; 319 (1-2): 109-116. https://doi.org/10.1016/ S0020-1693(01)00459-5
  • 17. Allan JR, Carson BR, Gerrard DL, Birnie J. Thermal, spectral and magnetic studies of some first row transition metal complexes of 2-(p-tolyl) pyridine. Thermochimica Acta 1990; 160 (2): 329-335. https://doi.org/10.1016/0040-6031(90)80273-2
  • 18. Frej A, Goeschen C, Näther C, Lüning U, Herges R. Synthesis and properties of di- and trinitrobenzyl substituted pyridine derivates. The paper is supposed to be published in the special issue of the ESOR XII 2009 meeting in Haifa. Editor of the issue is Amnon Stanger. Journal of Physical Organic Chemistry 2010; 23 (11): 1093. https://doi.org/10.1002/POC.1781
  • 19. Kismali G, Emen FM, Yesilkaynak T, Meral O, Demirkiran D et al. The cell death pathway induced by metal halide complexes of pyridine and derivative ligands in hepatocellular carcinoma cells-necrosis or apoptosis. European Review for Medical and Pharmacological Sciences 2012; 16 (8): 1001-1012.
  • 20. Tabrizi L, Zouchoune B, Zaiter A. Theoretical and experimental study of gold(III), palladium(II), and platinum (II) complexes with 3-((4-nitrophenyl)thio)phenylcyanamide and 2,2′-bipyridine ligands: Cytotoxic activity and interaction with 9-methylguanine. Inorganica Chimica Acta 2020; 499: 119211. https://doi.org/10.1016/J.ICA.2019.119211
  • 21. Kuduk-Jaworska J, Puszko A, Kubiak M, Pelczyńska M. Synthesis, structural, physico-chemical and biological properties of new palladium(II) complexes with 2,6-dimethyl-4-nitropyridine. Journal of Inorganic Biochemistry 2004; 98(8): 1447-1456. https://doi. org/10.1016/J.JINORGBIO.2004.05.008
  • 22. Franich AA, Živković MD, Milovanović J, Arsenijević D, Arsenijević A et al. In vitro cytotoxic activities, DNA- and BSA-binding studies of dinuclear palladium(II) complexes with different pyridine-based bridging ligands. Journal of Inorganic Biochemistry. 2020; 210: 111158. https://doi.org/10.1016/J.JINORGBIO.2020.111158
  • 23. M.J Frisch, Trucks GW, Schlegel HB, Suzerain GE, Robb MA et al. Gaussian 09. Published online 2003.
  • 24. Abkari A, Chaabane I, Guidara K. DFT (B3LYP/LanL2DZ and B3LYP/6311G+(d,p)) comparative vibrational spectroscopic analysis of organic-inorganic compound bis(4-acetylanilinium) tetrachlorocuprate(II). Physica E: Low-Dimensional Systems and Nanostructures 2016; 81: 136-144. https://doi.org/10.1016/j.physe.2016.03.010
  • 25. Dennington R, Keith JM. Gausswiev 5. Published online 2009.
  • 26. Jamroz MH. Vibrational Energy Distribution Analysis VEDA 4. Published online 2004.
  • 27. Ritchie DW. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins: Structure, Function, and Bioinformatics 2003; 52 (1): 98-106. https://doi.org/10.1002/PROT.10379
  • 28. Delano LW. The PyMOL Molecular Graphics System. http://www.pymol.org. Published online 2002. Accessed September 11, 2021. https:// ci.nii.ac.jp/naid/10020095229
  • 29. Alam M, Park S. Molecular structure, spectral studies, NBO, HOMO-LUMO profile, MEP and Mulliken analysis of 3β,6β-dichloro-5α- hydroxy-5α-cholestane. Journal of Molecular Structure 2018; 1159: 33-45. https://doi.org/10.1016/J.MOLSTRUC.2018.01.043
  • 30. Demircioğlu Z, Kaştaş ÇA, Büyükgüngör O. Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino)methyl)-3- methoxyphenol. Journal of Molecular Structure 2015; 1091: 183-195. https://doi.org/10.1016/j.molstruc.2015.02.076
  • 31. Franco-Pérez M, Gázquez JL. Electronegativities of Pauling and Mulliken in Density Functional Theory. Journal of Physical Chemistry A. 2019; 123(46): 10065-10071. https://doi.org/10.1021/ACS.JPCA.9B07468/SUPPL_FILE/JP9B07468_SI_001.PDF
  • 32. Kutlu E, Emen FM, Kismali G et al. Pyridine derivative platinum complexes: Synthesis, molecular structure, DFT and initial anticancer activity studies. Journal of Molecular Structure 2021; 1234: 130191. https://doi.org/10.1016/j.molstruc.2021.130191
  • 33. Celik S, Albayrak AT, Akyuz S, Ozel AE. Synthesis, molecular docking and ADMET study of ionic liquid as anticancer inhibitors of DNA and COX-2, TOPII enzymes. Journal of Biomolecular Structure & Dynamics 2020; 38 (5): 1354-1364. https://doi.org/10.1080/07391102. 2019.1604263
  • 34. Farhangian H, Eslami Moghadam M, Divsalar A, Rahiminezhad A. Anticancer activity of novel amino acid derivative of palladium complex with phendione ligand against of human colon cancer cell line. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 2017; 22 (7): 1055-1064. https://doi.org/10.1007/S00775-017-1483-Y
  • 35. Pranczk J, Jacewicz D, Wyrzykowski D, Chmurzynski L. Platinum(II) and Palladium(II) Complex Compounds as Anti-cancer Drugs. Methods of Cytotoxicity Determination. Current Pharmaceutical Analysis 2014; 10 (1): 2-9.
APA Meral Ö, Emen F, Kutlu E, Demirdöğen R, KAYA KINAYTÜRK N, Kismali G, KONAK Ş (2023). Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. , 280 - 293. 10.55730/1300-0527.3536
Chicago Meral Öğünç,Emen Fatih Mehmet,Kutlu Emine,Demirdöğen Ruken Esra,KAYA KINAYTÜRK Neslihan,Kismali Gorkem,KONAK Şevkinaz Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. (2023): 280 - 293. 10.55730/1300-0527.3536
MLA Meral Öğünç,Emen Fatih Mehmet,Kutlu Emine,Demirdöğen Ruken Esra,KAYA KINAYTÜRK Neslihan,Kismali Gorkem,KONAK Şevkinaz Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. , 2023, ss.280 - 293. 10.55730/1300-0527.3536
AMA Meral Ö,Emen F,Kutlu E,Demirdöğen R,KAYA KINAYTÜRK N,Kismali G,KONAK Ş Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. . 2023; 280 - 293. 10.55730/1300-0527.3536
Vancouver Meral Ö,Emen F,Kutlu E,Demirdöğen R,KAYA KINAYTÜRK N,Kismali G,KONAK Ş Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. . 2023; 280 - 293. 10.55730/1300-0527.3536
IEEE Meral Ö,Emen F,Kutlu E,Demirdöğen R,KAYA KINAYTÜRK N,Kismali G,KONAK Ş "Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies." , ss.280 - 293, 2023. 10.55730/1300-0527.3536
ISNAD Meral, Öğünç vd. "Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies". (2023), 280-293. https://doi.org/10.55730/1300-0527.3536
APA Meral Ö, Emen F, Kutlu E, Demirdöğen R, KAYA KINAYTÜRK N, Kismali G, KONAK Ş (2023). Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. Turkish Journal of Chemistry, 47(1), 280 - 293. 10.55730/1300-0527.3536
Chicago Meral Öğünç,Emen Fatih Mehmet,Kutlu Emine,Demirdöğen Ruken Esra,KAYA KINAYTÜRK Neslihan,Kismali Gorkem,KONAK Şevkinaz Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. Turkish Journal of Chemistry 47, no.1 (2023): 280 - 293. 10.55730/1300-0527.3536
MLA Meral Öğünç,Emen Fatih Mehmet,Kutlu Emine,Demirdöğen Ruken Esra,KAYA KINAYTÜRK Neslihan,Kismali Gorkem,KONAK Şevkinaz Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. Turkish Journal of Chemistry, vol.47, no.1, 2023, ss.280 - 293. 10.55730/1300-0527.3536
AMA Meral Ö,Emen F,Kutlu E,Demirdöğen R,KAYA KINAYTÜRK N,Kismali G,KONAK Ş Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. Turkish Journal of Chemistry. 2023; 47(1): 280 - 293. 10.55730/1300-0527.3536
Vancouver Meral Ö,Emen F,Kutlu E,Demirdöğen R,KAYA KINAYTÜRK N,Kismali G,KONAK Ş Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies. Turkish Journal of Chemistry. 2023; 47(1): 280 - 293. 10.55730/1300-0527.3536
IEEE Meral Ö,Emen F,Kutlu E,Demirdöğen R,KAYA KINAYTÜRK N,Kismali G,KONAK Ş "Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies." Turkish Journal of Chemistry, 47, ss.280 - 293, 2023. 10.55730/1300-0527.3536
ISNAD Meral, Öğünç vd. "Promoting antihepatocellular carcinoma activity against human HepG2 cells via pyridine substituted palladium complexes: in vitro evaluation and QSAR studies". Turkish Journal of Chemistry 47/1 (2023), 280-293. https://doi.org/10.55730/1300-0527.3536