Yıl: 2022 Cilt: 0 Sayı: 221 Sayfa Aralığı: 42 - 58 Metin Dili: İngilizce DOI: 10.54926/gdt.1084413 İndeks Tarihi: 15-03-2023

An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth

Öz:
It is known that DARPA SUBOFF submarine model does not have a horizontal stability in deep water. In this study, the horizontal stability of submarine model moving during the periscope (snorkel) position or close to the free water surface, has been determined in 3 DoF (degrees of freedom). While determining the submarine stability and hydrodynamic maneuvering derivatives, linear coefficients of lateral translational force at different depths and linear coefficients of yaw angular moment were used. The depths were selected as 1.1D, 2.2D, 3.3D and 6D, here D is submarine diameter. The maneuvering derivatives were obtained by performing systematic analyzes with the computational fluid dynamics method. Necessary validation studies were also carried out in computational analyzes. In computational fluid dynamics analysis, longitudinal and lateral force derivatives, and yaw moment derivatives were determined and X0, Xv, Xd, Xẟ, Yv, Yr, Yẟ, Nv, Nr ve Nẟ terms were computed in the linear model. A hydrodynamic model was generated with these coefficients. The horizontal stability was then determined with the effects of different depths by using this hydrodynamic model. It has been found that the submarine model has horizontal stability when cruising close to the free water surface and loses its horizontal stability for water depths greater than 4.6D.
Anahtar Kelime: DARPA SUBOFF horizontal stability maneuvering derivatives CFD depth effect

Darpa Denizalti Modelinde Derinliğe Bağlı Olarak Değişen Hidrodinamik Manevra Türevlerinin ve Yatay Stabilitenin İncelenmesi

Öz:
Bilindiği üzere, DARPA SUBOFF denizaltı modeli derin suda yatay stabiliteye sahip değildir. Bu çalışmada, denizaltı modelinin periskop (şnorkel) seyri esnasında veya su yüzeyine yakın hareket ederken yatay stabilitesi 3 serbestlik dereceli olarak tespit edilmiştir. Denizaltı stabilitesi ve hidrodinamik manevra türevleri tespit edilirken farklı derinliklerde yanal öteleme kuvvetine ait doğrusal katsayılar ve savrulma açısal momentine ait doğrusal katsayılar kullanılmıştır. Denizaltı çapı D olmak üzere, derinlikler 1.1D, 2.2D, 3.3D ve 6D olarak seçilmiştir. Manevra türevleri hesaplamalı akışkanlar dinamiği metodlarıyla bir seri sistematik analiz yapılarak elde edilmiştir. Hesaplamalı analizlerde gerekli doğrulama çalışmaları da yapılmıştır. Hesaplamalı akışkanlar dinamiği analizlerinde boyuna ve yanal kuvvet türevleri, ve savrulma momenti türevleri hesaplanarak doğrusal modelde X0, Xv, Xd, Xẟ, Yv, Yr, Yẟ. Nv, Nr ve Nẟ katsayıları belirlenmiş ve hidrodinamik model oluşturulmuştur. Farklı derinliklere göre elde edilen hidrodinamik türevler ile denizaltının yatay stabiliteye sahip olup olmadığı tespit edilmiştir. Denizaltı modelinin, serbest su yüzeyine yakın seyir durumlarında yatay stabiliyete sahip olduğu ve 4.6D derinlikten itibaren ise yatay stabilitesini kaybettiği bulunmuştur.
Anahtar Kelime: DARPA denizaltı modeli yatay stabilite manevra türevleri HAD derinlik etkisi

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Amiri, M. M., Sphaier, S. H., Vitola, M. A., & Esperança, P. T. (2019). URANS investigation of the interaction between the free surface and a shallowly submerged underwater vehicle at steady drift. Applied Ocean Research, 84, 192-205.
  • Ashok, A., & Smits, A. J. (2013). The turbulent wake of a submarine model in pitch and yaw. In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Begel House Inc.
  • Duman, S., & Bal, S. (2019). A quick-responding technique for parameters of turning maneuver. Ocean Engineering, 179, 189-201.
  • Duman, S., & Bal, S. (2021). Prediction of the acceleration and stopping manoeuvres of a bare hull surface combatant by closed-form solutions and CFD. Ocean Engineering, 235, 109428.
  • Efremov, D. V., & Milanov, E. M. (2019). Hydrodynamics of DARPA SUBOFF submarine at shallowly immersion conditions. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13(2).
  • Hoerner, S. F. (1965). Fluid-dynamic drag. Hoerner fluid dynamics.
  • Inoue, S., Hirano, M., & Kijima, K. (1981). Hydrodynamic derivatives on ship manoeuvring. International Shipbuilding Progress, 28(321), 112-125.
  • ITTC, S. (2008). Final Report and Recommendation to the 25th ITTC. Proceedings of the 25th ITTC. The Seakeeping Committee.
  • Kırıkbaş, O., Kınacı, Ö. K., & Bal, S.,. Sualtı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. Gemi ve Deniz Teknolojisi, (219), 6-58.
  • Kırıkbaş, O., Bal, S., & Baykal, M. A. (2021). Comparison Of The Rules Of Classification Societies (IACS Members) In The Area Of Submersible Maneuvering. Avrupa Bilim ve Teknoloji Dergisi, (28), 178-183.
  • Kırıkbaş, O., Kınacı, Ö. K., & Bal, S., Su Altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-II: Akışkan Sınırlarının Etkileri. Gemi ve Deniz Teknolojisi, (220), 135-174.
  • Liu, Y., Li, Y., & Shang, D. (2019). The hydrodynamic noise suppression of a scaled submarine model by leading-edge serrations. Journal of Marine Science and Engineering, 7(3), 68.
  • Li, D., Yang, Q., Zhai, L., Wang, Z., & He, C. L. (2021). Numerical investigation on the wave interferences of submerged bodies operating near the free surface. International Journal of Naval Architecture and Ocean Engineering, 13, 65-74.
  • Racine, B., & Paterson, E. (2005, June). CFD-based method for simulation of marine-vehicle maneuvering. In 35th AIAA Fluid Dynamics Conference and Exhibit (p. 4904).
  • Ray, A., Singh, S. N., & Seshadri, V. (2009, January). Evaluation of linear and nonlinear hydrodynamic coefficients of underwater vehicles using CFD. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 43444, pp. 257-265).
  • Roddy, R. F. (1990). Investigation of the stability and control characteristics of several configurations of the DARPA SUBOFF model (DTRC Model 5470) from captive-model experiments. David Taylor Research Center Bethesda MD Ship Hydromechanics Dept.
  • Sakaki, A., & Kerdabadi, M. S. (2020). Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle. Zeszyty Naukowe Akademii Morskiej w Szczecinie.
  • Sezen, S., Dogrul, A., Delen, C., & Bal, S. (2018). Investigation of self-propulsion of DARPA Suboff by RANS method. Ocean Engineering, 150, 258-271.
  • Yoon, Hyunse. "Phase-averaged stereo-PIV flow field and force/moment/motion measurements for surface combatant in PMM maneuvers." PhD (Doctor of Philosophy) thesis, University of Iowa, 2009. https://doi.org/10.17077/etd.jgq7s29l
APA Çavdar F, Bal S (2022). An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. , 42 - 58. 10.54926/gdt.1084413
Chicago Çavdar Furkan,Bal Sakir An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. (2022): 42 - 58. 10.54926/gdt.1084413
MLA Çavdar Furkan,Bal Sakir An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. , 2022, ss.42 - 58. 10.54926/gdt.1084413
AMA Çavdar F,Bal S An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. . 2022; 42 - 58. 10.54926/gdt.1084413
Vancouver Çavdar F,Bal S An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. . 2022; 42 - 58. 10.54926/gdt.1084413
IEEE Çavdar F,Bal S "An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth." , ss.42 - 58, 2022. 10.54926/gdt.1084413
ISNAD Çavdar, Furkan - Bal, Sakir. "An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth". (2022), 42-58. https://doi.org/10.54926/gdt.1084413
APA Çavdar F, Bal S (2022). An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. Gemi ve Deniz Teknolojisi, 0(221), 42 - 58. 10.54926/gdt.1084413
Chicago Çavdar Furkan,Bal Sakir An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. Gemi ve Deniz Teknolojisi 0, no.221 (2022): 42 - 58. 10.54926/gdt.1084413
MLA Çavdar Furkan,Bal Sakir An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. Gemi ve Deniz Teknolojisi, vol.0, no.221, 2022, ss.42 - 58. 10.54926/gdt.1084413
AMA Çavdar F,Bal S An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. Gemi ve Deniz Teknolojisi. 2022; 0(221): 42 - 58. 10.54926/gdt.1084413
Vancouver Çavdar F,Bal S An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth. Gemi ve Deniz Teknolojisi. 2022; 0(221): 42 - 58. 10.54926/gdt.1084413
IEEE Çavdar F,Bal S "An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth." Gemi ve Deniz Teknolojisi, 0, ss.42 - 58, 2022. 10.54926/gdt.1084413
ISNAD Çavdar, Furkan - Bal, Sakir. "An Investigation of Hydrodynamic Maneuvering Derivatives and Horizontal Stability of Darpa Suboff Depending on Depth". Gemi ve Deniz Teknolojisi 221 (2022), 42-58. https://doi.org/10.54926/gdt.1084413