Yıl: 2022 Cilt: Sayı: 222 Sayfa Aralığı: 26 - 43 Metin Dili: Türkçe DOI: 10.54926/gdt.1093206 İndeks Tarihi: 15-03-2023

Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi

Öz:
Tonaj ve değer olarak küresel ticaretin taşınmasında en büyük paya sahip olan denizyolu taşımacılığından kaynaklanan emisyonların dünya toplamı içindeki payı günden güne artmaktadır. Uluslararası Denizcilik Örgütü, bu gidişatı engellemek adına gemilerden kaynaklı emisyonların azaltılmasına yönelik regülasyonlar yayınlamıştır. Bu regülasyonlara göre gemilerden kaynaklı çeşitli zararlı gazlara ait emisyon oranları yıllar içerisinde daha da azaltılacaktır. Bu çerçevede denizcilik işletmeleri arasında hali hazırda üst seviyede seyreden rekabet sahası genişleyecektir. Bu kapsamda işletmelerin kendi kaynaklarını geliştirerek rekabetçi avantaj yakalayabileceğini savunan kaynak temelli bakış açısı yakıt teknolojisinin gelişimine uyum açısından denizcilik işletmelerine rehber olabilecektir. Bu çalışmada IMO 2050 kuralları kapsamında karbonu sıfırlayan alternatif gemi yakıtları çeşitli yönlerden değerlendirilmiştir. Alternatif yakıtlar içerisinden doğalgaz, metanol, amonyak, dizel, hidrojen sıvı ve hidrojen ele alınmış, teknik, ekonomik, lojistik vb. özellikleri detaylandırılmıştır. Değerlendirme kapsamında alternatiflerin teknik, ekonomik, lojistik vs. açılardan güçlü ve zayıf yönleri ortaya konulmuştur. Bunun yanı sıra ilgili yakıtlar bazı teknik özellikler kapsamında TOPSIS yöntemi kullanılarak sıralanmıştır. Çalışmanın sonuçlarına göre Dizel yakıtın teknik açıdan gemiler için en iyi seçenek olduğu, bu yakıtı hidrojen ve doğalgazın izlediği ortaya konulmuştur. Hidrojenin teknik açıdan neredeyse dizel kadar etkili olması geleceğin karbonsuz yakıtının tespiti için önemli bir gelişme sunmaktadır. Bu bağlamda alternatif gemi yakıtları hem teknik özellikler hem de rekabetçi avantaj bağlamında ele alınarak teoriye katkı sağlanmıştır. Alternatif yakıtların kullanımı, tedariği, depolanması gibi konularda bilgi verilmesi ile uygulayıcılara bir bilişsel çerçeve sunulmuştur.
Anahtar Kelime: Alternatif yakıtlar Denizyolu taşımacılığı Kaynak temelli görüş Dekarbonizasyon

Evaluation of Decarbonization Applications in Maritime Transportation in Terms of Alternative Fuels in the Context of Resource-Based View

Öz:
The share of emissions originating from maritime transport, which has the largest share in the transportation of global trade in terms of tonnage and value, in the world total is increasing day by day. The International Maritime Organization has published regulations to reduce exhaust gas emissions from ships to prevent this trend. According to these regulations, the emission rates of various harmful gases originating from ships will be further reduced over the years. In this framework, currently, the intensely competitive field of the maritime transport market will expand. In this context, the resource-based view, which argued that businesses can gain a competitive advantage by developing their resources, can guide maritime enterprises in terms of adaptation to the development of fuel technology. In this study, alternative marine fuels that neutralize carbon within the scope of the IMO 2050 rules have been evaluated from various aspects. Among the alternative fuels, natural gas, methanol, ammonia, diesel, hydrogen liquid, and hydrogen were discussed and their features as technical, economic, logistics, etc. were detailed. Within the scope of the evaluation, the strengths and weaknesses of the alternatives were revealed from various perspectives. In addition, the related fuels are listed using the TOPSIS method within the scope of some technical specifications. According to the results of the study, it was revealed that diesel fuel is the best option for ships from a technical point of view, followed by hydrogen and natural gas. The fact that hydrogen is technically almost as effective as diesel offers an important advance for the detection of carbon-free ship fuel of the future. In this context, alternative ship fuels have been discussed in terms of both technical features and competitive advantage, contributing to the theory. A cognitive framework was presented to the practitioners by providing information on the use, supply, and storage of alternative fuels.
Anahtar Kelime: Alternative fuels Maritime transportation Resource-based view Decarbonization

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • ABS, (2021). Sustainability Whitepaper Hydrogen as Marıne Fuel, https://maritimecyprus.com/wp-content/uploads/2021/06/ABS-hydrogen-as-marine-fuel.pdf [Online] [Erişim 21.03.2022].
  • ABS, (2022). Hydrogen as Marine Fuel Whitepaper, https://absinfo.eagle.org/acton/media/16130/hydrogen-as-marine-fuel-whitepaper [Online] [Erişim 21.02.2022].
  • Advanced Motor Fuels, (2015). Ammonia, https://www.iea-amf.org/content/fuel_information/ammonia [Online] [Erişim 21.03.2022].
  • Andersson, K., Brynolf, S., Hansson, J., & Grahn, M. (2020). Criteria and Decision Support for A Sustainable Choice of Alternative Marine Fuels. Sustainability, 12(9), 3623.
  • Bahadori, A. (2014). Natural gas processing: technology and engineering design. Gulf Professional Publishing.
  • Bal, Y. (2010). Rekabet Avantajı Yaratmada Kaynak Temelli Yaklaşım Bağlamında İnsan Kaynaklarının Rolü. Sosyal Ekonomik Araştırmalar Dergisi, 10(20), 267-278.
  • Balcombe, P., Brierley, J., Lewis, C., Skatvedt, L., Speirs, J., Hawkes, A., & Staffell, I. (2019). How to decarbonise international shipping: Options for fuels, technologies and policies. Energy conversion and management, 182, 72-88.
  • Bouman, E. A., Lindstad, E., Rialland, A. I., & Strømman, A. H. (2017). State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping–A review. Transportation Research Part D: Transport and Environment, 52, 408-421.
  • Brahim, B. T., Wiese, F., & Münster, M. (2019). Pathways to climate-neutral shipping: A Danish case study. Energy, 188, 116009.
  • Brynolf, S., Fridell, E., & Andersson, K. (2014). Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas, methanol and bio-methanol. Journal of cleaner production, 74, 86-95.
  • Bucak, U., Arslan, T., Demirel, H., & Balın, A. (2021). Analysis of Strategies to Reduce Air Pollution from Vessels: A Case for the Strait of Istanbul. Journal of ETA Maritime Science, 9(1), 22-30.
  • Chakravarthy, Balaji; Doz, Yves (1992), “Strategy Process Research: Focusing on Corporate Self-Renewal”, Strategic Management Journal, C. 13: 5-14.
  • Cinti, G., Desideri, U., Penchini, D., & Discepoli, G. (2014). Experimental analysis of SOFC fuelled by ammonia. Fuel Cells, 14(2), 221-230.
  • CMBTECH, (2022). Hydrotug https://cmb.tech/divisions/marine/hydrotug [Online] [Erişim 21.03.2022].
  • Dimitriou, P., & Javaid, R. (2020). A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 45(11), 7098-7118.
  • DNV. (2021). LNG as ship fuel, https://www.dnv.com/maritime/insights/topics/lng-as-marine-fuel/environmental-performance.html [Online] [Erişim 21.01.2022].
  • DNV. (2022a). LNG as marine fuel, https://www.dnv.com/maritime/insights/topics/lng-as-marine-fuel/technologies.html [Online] [Erişim 21.02.2022].
  • DNV. (2022b). Ammonia has attracted wide interest as a source of zero emission fuel for shipping, https://www.dnv.com/Publications/ammonia-as-a-marine-fuel-191385 [Online] [Erişim 21.02.2022].
  • Elgas. (2022). Energy Content of LNG - Energy Density of LNG, http://lng.elgas.com.au/energy-content-lng [Online] [Erişim 21.03.2022].
  • Energy Efficiency and Renewable Energy (EERE). (2001). Hydrogenproperties, https://www1.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm01r0.pdf [Online] [Erişim 21.03.2022].
  • Engineeringtoolbox. (2003). Fuels - Higher and Lower Calorific Values https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html [Online] [Erişim 21.03.2022].
  • Erdemir, D., & Dincer, I. (2021). A perspective on the use of ammonia as a clean fuel: challenges and solutions. International Journal of Energy Research, 45(4), 4827-4834.
  • Fridell, E., Salberg, H., & Salo, K. (2021). Measurements of Emissions to Air from a Marine Engine Fueled by Methanol. Journal of Marine Science and Application, 20(1), 138-143.
  • Gilbert, P., Walsh, C., Traut, M., Kesieme, U., Pazouki, K., & Murphy, A. (2018). Assessment of full life-cycle air emissions of alternative shipping fuels. Journal of Cleaner Production, 172, 855-866.
  • Hansson, J., Månsson, S., Brynolf, S., & Grahn, M. (2019). Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass and Bioenergy, 126, 159-173.
  • Huth, M., & Heilos, A. (2013). Fuel flexibility in gas turbine systems: impact on burner design and performance. In Modern Gas Turbine Systems (pp. 635-684). Woodhead Publishing.
  • Hwang, C. L., & Yoon, K. (1981), “Methods for multiple attribute decision making” In Multiple attribute decision making, pp. 58-191, Springer, Berlin, Heidelberg., https://doi.org/10.1007/978-3-642-48318-9_3
  • International Labour Organization (ILO). (2022). Diesel Fuel, https://www.ilo.org/dyn/icsc/showcard.display?p_lang=en&p_card_id= 1561&p_version=2 [Online] [Erişim 21.03.2022].
  • International Maritime Organization (IMO). (2006). “MARPOL Annex VI: regulations for the prevention of air pollution from ships.” London, UK: IMO Publishing.
  • IMO. (2018). “Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue adoption of the initial IMO strategy on reduction of GHG emissions from ships and existing IMO activity related to reducing GHG emissions in the shipping sector,” London, UK: IMO Publishing.
  • Karacaoğlu, K. (2006). İşletmelerin rekabet üstünlüğü anlayışlarını etkileyen ögelerin endüstri temelli ve kaynak temelli bakış açısına göre belirlenmesi: Kayseri ilinde bir araştırma. Çukurova Üniversitesi İİBF Dergisi, 10(2), 1-22.
  • Kesieme, U., Pazouki, K., Murphy, A., & Chrysanthou, A. (2019). Biofuel as an alternative shipping fuel: technological, environmental and economic assessment. Sustainable Energy & Fuels, 3(4), 899-909.
  • Kim, H., Koo, K. Y., & Joung, T. H. (2020). A study on the necessity of integrated evaluation of alternative marine fuels. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 4(2), 26-31.
  • Konur, O., Bayraktar, M., Pamik, M., Kuleyin, B., & Nuran, M. (2019). The energy efficiency gap in Turkish maritime transportation. Polish Maritime Research.
  • Lamas, M. I., Rodríguez, C. G., Telmo, J., & Rodríguez, J. D. (2015). Numerical analysis of emissions from marine engines using alternative fuels. Polish Maritime Research, (4), 48-52.
  • Leng Leng, X., Deng, Y., He, D., Wei, S., He, Z., Wang, Q., ... & Zhu, S. (2022). A preliminary numerical study on the use of methanol as a Mono-Fuel for a large bore marine engine. Fuel, 310, 122309.
  • MAN. (2022). Leading experts in dual-fuel solutions, https://www.man-es.com/marine/products/megi-mega [Online] [Erişim 21.02.2022].
  • MAN. (2022). Methanol for the maritime energy transition, https://www.man-es.com/marine/strategic-expertise/future-fuels/methanol [Online] [Erişim 21.02.2022].
  • MAN. (2022). Unlocking ammonia's potential for shipping, https://www.man-es.com/discover/two-stroke-ammonia-engine [Online] [Erişim 21.02.2022].
  • Methanex. (2021). Methanol as a Marine Fuel. https://www.methanex.com/sites/default/files/ methanex_brochure_marinefuel_final2_032521.pdf. [Online] [Erişim 21.02.2022].
  • Methanol Institute. (2016). Physical Properties of Pure Methanol. https://www.methanol.org/wp-content/uploads/2016/06/Physical-Properties-of-Pure-Methanol.pdf [Online] [Erişim 21.03.2022].
  • Mokhatab, S., Mak, J. Y., Valappil, J., & Wood, D. A. (2013). Handbook of liquefied natural gas. Gulf Professional Publishing.
  • Montgomery, Cynthia; Wernerfelt, Birger; Balakrishnan, Srinivasan (1989), “Strategy Content and the Research Process: A Critique and Commentary”, Strategic Management Journal, C. 10, S. 2: 189-197.
  • Mørch, C. S., Bjerre, A., Gøttrup, M. P., Sorenson, S. C., & Schramm, J. (2011). Ammonia/hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system. fuel, 90(2), 854-864.
  • Noor, C. M., Noor, M. M., & Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: A review. renewable and sustainable energy reviews, 94, 127-142.
  • Özdemir, B. & Taşcı, D. (2020). Kaynak Temelli Görüş Ekseninde Örgütsel Kaynakların Rekabet Stratejileri Üzerindeki Etkisi: Türkiye’nin İlk 1000 Büyük Sanayi Kuruluşu’nda Bir Araştırma. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 15(3), 1019-1042.
  • Rangone, A. (1999). A resource-based approach to strategy analysis in small-medium sized enterprises. Small business economics, 12(3), 233-248.
  • Reiter, A. J., & Kong, S. C. (2011). Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel, 90(1), 87-97.
  • Ren, J., & Liang, H. (2017). Measuring the sustainability of marine fuels: A fuzzy group multi-criteria decision making approach. Transportation Research Part D: Transport and Environment, 54, 12-29.
  • Ren, J., & Lützen, M. (2017). Selection of sustainable alternative energy source for shipping: Multi-criteria decision making under incomplete information. Renewable and Sustainable Energy Reviews, 74, 1003-1019.
  • Roth, (2019). Safety data sheet. https://www.carlroth.com/downloads/sdb/en/7/SDB_7918-GB-EN.pdf? [Online] [Erişim 21.03.2022].
  • Sarvan, F., Arıcı, E. D., Özen, J., Özdemir, B., & İçigen, E. T. (2003). On stratejik yönetim okulu: Biçimleşme okulunun bütünleştirici çerçevesi. Akdeniz İİ BF Dergisi, 6, 73-122.
  • SEA-LNG. (2022). LNG – A FUEL IN TRANSITION, https://sea-lng.org/reports/sea-lng-2021-22-a-view-from-the-bridge/ [Online] [Erişim 21.02.2022].
  • Seddiek, I. S., Elgohary, M. M., & Ammar, N. R. (2015). The hydrogen-fuelled internal combustion engines for marine applications with a case study. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, 66(1), 23-38.
  • The Maritime Executive, (2022). Shipowners Ordered Record Number of LNG-Fueled Vessels in 2021, https://www.maritime-executive.com/article/shipowners-ordered-record-number-of-lng-fueled-vessels-in-2021 [Online] [Erişim 21.02.2022].
  • Tran, T. M. T., Yuen, K. F., Li, K. X., Balci, G., & Ma, F. (2020). A theory-driven identification and ranking of the critical success factors of sustainable shipping management. Journal of Cleaner Production, 243, 1-14.
  • Tusiani, M. D., & Shearer, G. (2016). LNG: Fuel for a Changing World—A Nontechnical Guide. PennWell Books, LLC.
  • Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I., & Bowen, P. J. (2018). Ammonia for power. Progress in Energy and combustion science, 69, 63-102.
  • Vejvar, M., Lai, K. H., & Lo, C. K. (2020). A citation network analysis of sustainability development in liner shipping management: a review of the literature and policy implications. Maritime Policy & Management, 47(1), 1-26.
  • Wang, H., Yao, A., Yao, C., Wang, B., Wu, T., & Chen, C. (2020). Investigation to meet China II emission legislation for marine diesel engine with diesel methanol compound combustion technology. Journal of Environmental Sciences, 96, 99-108.
  • Wartsila. (2021). Wärtsilä’s LNG experience key to multi-engine order for new Italian ferry, https://www.wartsila.com/media/news/13-07-2021-wartsila-s-lng-experience-key-to-multi-engine-order-for-new-italian-ferry-2947069 [Online] [Erişim 21.02.2022].
  • Wexler, P., Anderson, B. D., Gad, S. C., Hakkinen, P. B., Kamrin, M., De Peyster, A., ... & Shugart, L. R. (Eds.). (2005). Encyclopedia of toxicology (Vol. 1). Academic Press. Windcatworkboats, (2022) Hydrocat MK3.5 H2, https://www.windcatworkboats.com/portfolio/ hydrocat-mk3-5-h2/ [Online] [Erişim 21.02.2022].
  • Wu, X., Zhang, L., & Luo, M. (2020). Discerning sustainability approaches in shipping. Environment, Development and Sustainability, 22, 5169–5184.
  • Yuen, K. F., Wang, X., Wong, Y. D., & Zhou, Q. (2017). Antecedents and outcomes of sustainable shipping practices: The integration of stakeholder and behavioural theories. Transportation Research Part E: Logistics and Transportation Review, 108, 18-35.
  • Zincir, B., Deniz, C., & Tunér, M. (2019). Investigation of environmental, operational and economic performance of methanol partially premixed combustion at slow speed operation of a marine engine. Journal of Cleaner Production, 235, 1006-1019.
APA BAYRAKTAR M, Bucak U, Demirel H (2022). Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. , 26 - 43. 10.54926/gdt.1093206
Chicago BAYRAKTAR Murat,Bucak Umur,Demirel Hakan Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. (2022): 26 - 43. 10.54926/gdt.1093206
MLA BAYRAKTAR Murat,Bucak Umur,Demirel Hakan Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. , 2022, ss.26 - 43. 10.54926/gdt.1093206
AMA BAYRAKTAR M,Bucak U,Demirel H Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. . 2022; 26 - 43. 10.54926/gdt.1093206
Vancouver BAYRAKTAR M,Bucak U,Demirel H Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. . 2022; 26 - 43. 10.54926/gdt.1093206
IEEE BAYRAKTAR M,Bucak U,Demirel H "Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi." , ss.26 - 43, 2022. 10.54926/gdt.1093206
ISNAD BAYRAKTAR, Murat vd. "Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi". (2022), 26-43. https://doi.org/10.54926/gdt.1093206
APA BAYRAKTAR M, Bucak U, Demirel H (2022). Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. Gemi ve Deniz Teknolojisi, (222), 26 - 43. 10.54926/gdt.1093206
Chicago BAYRAKTAR Murat,Bucak Umur,Demirel Hakan Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. Gemi ve Deniz Teknolojisi , no.222 (2022): 26 - 43. 10.54926/gdt.1093206
MLA BAYRAKTAR Murat,Bucak Umur,Demirel Hakan Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. Gemi ve Deniz Teknolojisi, vol., no.222, 2022, ss.26 - 43. 10.54926/gdt.1093206
AMA BAYRAKTAR M,Bucak U,Demirel H Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. Gemi ve Deniz Teknolojisi. 2022; (222): 26 - 43. 10.54926/gdt.1093206
Vancouver BAYRAKTAR M,Bucak U,Demirel H Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi. Gemi ve Deniz Teknolojisi. 2022; (222): 26 - 43. 10.54926/gdt.1093206
IEEE BAYRAKTAR M,Bucak U,Demirel H "Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi." Gemi ve Deniz Teknolojisi, , ss.26 - 43, 2022. 10.54926/gdt.1093206
ISNAD BAYRAKTAR, Murat vd. "Deniz Taşımacılığında Dekarbonizasyon Uygulamalarının Kaynak Temelli Görüş Bağlamında Alternatif Yakıtlar Açısından Değerlendirilmesi". Gemi ve Deniz Teknolojisi 222 (2022), 26-43. https://doi.org/10.54926/gdt.1093206