Yıl: 2022 Cilt: Sayı: 222 Sayfa Aralığı: 209 - 230 Metin Dili: Türkçe DOI: 10.54926/gdt.1211008 İndeks Tarihi: 16-03-2023

Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar

Öz:
Deneysel çalışmalar mühendislik alanında sistem ve yapıların tasarımı, optimizasyonu, tasarımın iyileştirilmesi faaliyetlerinin vazgeçilmez ögelerindendir. Ancak özellikle birden çok faktörün performans ölçümleri üzerindeki etkisinin değerlendirilmesi amacıyla yapılan deneysel çalışmalarda elde edilen bulguların işaret ettiği sonuçlar, istatistiksel olarak anlamlı bir şekilde yorumlanamayabilir. Buna ek olarak, kaynakların (zaman, iş gücü ve maddi kaynaklar vb.) kısıtlı oluşu ise deneysel çalışmaların en önemli sınırlılıkları arasında yer almaktadır. Bu çalışmada, gemilerin balast tanklarında sediman birikimini azaltmak için geliştirilen pnömatik sistemin çalışma koşullarını belirleyen üç temel faktör ele alınmış ve bu faktörlerin sedimanın azaltılmasına etkisi istatistiksel açıdan irdelenmiştir. Çalışma kapsamında uygulanan klasik istatistiksel yaklaşımlarla, deneysel veriler istenilen düzeyde anlamlı bir şekilde yorumlanamamıştır. Bu nedenle deney setinden elde edilen veri kümesindeki ilişkileri istatistiksel bir model üzerinden yorumlamak yerine doğrudan veri üzerinden değişkenler arasındaki ilişkinin ortaya çıkarılması değerlendirilmiştir. Bunun için her ne kadar veri kümesindeki veri sayısı sınırlı olsa da Yapay Sinir Ağları (YSA) yaklaşımı uygulanmıştır. YSA girdi setinde veri sayısı bu yaklaşımın doğruluk ölçüsü (accuracy) üzerinde büyük bir öneme sahiptir. Söz konusu deneysel çalışmada veri setinin sonsuz sayıya çıkarılması teorik olarak mümkün olsa da kaynak kısıtları nedeniyle bunun gerçekleştirilmesi uygulanabilir değildir. Bu nedenle YSA modeli oluşturulurken deneysel çalışmanın amacı dikkate alınmış ve farklı bir yaklaşım uygulanmıştır. Deney verisinin bir kısmı YSA modelinin eğitim aşamasında kullanılmış, YSA modelinin optimum bir çalışma koşulu önermesi sağlanmıştır. YSA eğitim aşamasına dahil edilmemiş olan deneysel sonuçlar ise model tarafından önerilen optimum çalışma koşulunun deneysel olarak karşılaştırılmasında kullanılmıştır. Söz konusu çalışmada YSA optimizasyon için bir araç olarak kullanılmış ve model tarafından önerilen optimum çalışma koşulu, tüm deney verileri arasında sediman birikimini azaltılması açısından en uygun sonucu vermiştir. Bu çalışmada, gemilerin balast tanklarında sediman birikimini azaltmak için geliştirilen sistemin işletme parametresinin optimizasyonu için yapılan deneysel çalışma sonuçlarının istatistiksel olarak yorumlanmasında yaşanan sorunlar ve YSA kullanılırken uygulanan yaklaşıma yer verilmiştir.
Anahtar Kelime: YSA balast sedimanı balast tankı

Statistical Approaches to Optimize the System to Reduce Sediment Accumulation in Ballast Tanks

Öz:
Experimental studies, which are essential methods in engineering, are powerful techniques in terms of designing structures, optimization, and improvement of design. However, the results illustrated by experimental studies evaluating the effect of multiple factors on measures of performance may not be interpreted as statistically significant. In addition, the limited resources (time, labor and financial resources, etc.) are among the most important limitations of the experimental studies. In this study, three main factors that determine the working conditions of the pneumatic system developed to reduce the sediment accumulation in the ballast tanks of the ships are considered and the effect of these factors on sediment reduction is examined statistically. With the classical statistical approaches applied within the study, the experimental data could not be interpreted in a meaningful way at the desired level. For this reason, instead of interpreting the relationships in the data set obtained from the experimental set through a statistical model, it was determined to reveal the relationship between the variables directly through the data. Therefore, although the number of data in the dataset is limited, the Artificial Neural Networks approach been applied (ANN). The number of input data in the ANN structure set greatly affects the accuracy of this approach. Although it is theoretically possible to increase the data set to an infinite number in the experimental study in question, this is not applicable due to resource limitations, particularly time and labor. Because of that, another application is created when forming the ANN model, considering the purpose of the experimental study. Some of the experimental data is used in the training phase of the ANN model, and the ANN model is provided to suggest an optimal working condition. Experimental results not included in the ANN training phase are used to experimentally compare the optimal working condition proposed by the model. In this study, ANN is used as a tool for optimization and the optimum operating condition suggested by the model provides the best result in terms of sediment accumulation reduction among all experimental data. In this study, the problems experienced in the statistical interpretation of the experimental study results for the optimization of the operating parameter of the system developed to reduce the sediment accumulation in the ballast tanks of the ships and the approach applied when using Artificial Neural Networks (ANN) are discussed.
Anahtar Kelime: ANN ballast sediment ballast tank

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Altug, Gulsen, Sevan Gurun, Mine Cardak, Pelin S. Ciftci, and Samet Kalkan. 2012. “The Occurrence of Pathogenic Bacteria in Some Ships’ Ballast Water Incoming from Various Marine Regions to the Sea of Marmara, Turkey.” Marine Environmental Research 81:35–42. doi: 10.1016/j.marenvres.2012.08.005.
  • Archdeacon, Thomas. 1994. Correlation and Regression Analysis: A Historian’s Guide. University of Wisconsin Press.
  • Bailey, Sarah A., Torben Brydges, Oscar Casas-Monroy, Jocelyn Kydd, R. Dallas Linley, Robin M. Rozon, and John A. Darling. 2022. “First Evaluation of Ballast Water Management Systems on Operational Ships for Minimizing Introductions of Nonindigenous Zooplankton.” Marine Pollution Bulletin 182:113947. doi: 10.1016/J.MARPOLBUL.2022.113947. Bilgin Güney, Ceren. 2017. BALAST SUYU ARITIM SİSTEMLERİNİN İNCELENMESİ. İstanbul.
  • Bilgin Güney, Ceren. 2022. “Optimization of Operational Parameters of Pneumatic System for Ballast Tank Sediment Reduction with Experimental and ANN Applications.” Ocean Engineering 259:111927. doi: 10.1016/J.OCEANENG.2022.111927.
  • Bilgin Güney, Ceren, Devrim Bülent Danışman, and Şafak Nur Ertürk Bozkurtoğlu. 2020. “Reduction of Ballast Tank Sediment: Evaluating the Effect of Minor Structural Changes and Developing a Pneumatic Cleaning System.” Ocean Engineering 203. doi: 10.1016/j.oceaneng.2020.107204.
  • Bilgin Güney, Ceren, Devrim Bülent Danışman, Şafak Nur Ertürk Bozkurtoğlu, and Fatma Yonsel. 2018a. “Determination of Sediment Accumulation Pattern in A Double Bottom Ballast Tank Model.” Brodogradnja/Shipbuilding 69(2):55–67. doi: 10.21278/brod69204.
  • Bilgin Güney, Ceren, Devrim Bülent Danışman, Şafak Nur Ertürk Bozkurtoğlu, and Fatma Yonsel. 2018b. “Determination of Sediment Distribution in a Lab-Scale Ballast Tank Model.” Pp. 815–26 in INT-NAM 2018 3rd International Naval architecture and Maritime Symposium, edited by A. D. Alkan. Istanbul.
  • Bilgin Güney, Ceren, Şafak Nur Ertürk Bozkurtoğlu, Devrim Bülent Danışman, and Fatma Yonsel. 2016. “Another Challenge: Sediments of The Ballast Tanks.” in 1st International Congress on Ship and Marine Technology; “Green Technologies.” İstanbul.
  • Danişman, Devrim Bülent. 2014. “Reduction of Demi-Hull Wave Interference Resistance in Fast Displacement Catamarans Utilizing an Optimized Centerbulb Concept.” Ocean Engineering 91:227–34. doi: 10.1016/J.OCEANENG.2014.09.018.
  • Dong, Ying, Haoran Zhang, Huixian Wu, Junzeng Xue, Yanan Liu, and Xiaodong Jiang. 2021. “Invasion Risk to Yangtze River Estuary Posed by Resting Eggs in Ballast Sediments from Transoceanic Ships.” Journal of Experimental Marine Biology and Ecology 545. doi: 10.1016/j.jembe.2021.151627.
  • Drake, Lisa A., Martina A. Doblin, and Fred C. Dobbs. 2007. “Potential Microbial Bioinvasions via Ships’ Ballast Water, Sediment, and Biofilm.” Marine Pollution Bulletin 55(7–9):333–41. doi: 10.1016/j.marpolbul.2006.11.007.
  • Edwards, Allen L. 1984. An Introduction to Linear Regression and Correlation. 2nd ed. W.H. Freeman. European Environment Agency. 2021. “Pathways of Introduction of Marine Non-Indigenous Species to European Seas.” Retrieved (https://www.eea.europa.eu/data-and-maps/indicators/trends-in-marine-alien-species-1/assessment).
  • Glomski, LeeAnn M. 2015. Zebra Mussel Chemical Control Guide - ERDC/EL TR-15-9. Gollasch, Stephan, and Matej David. 2019. Ballast Water: Problems and Management. Second Edi. Elsevier Ltd.
  • Grigorovich, Igor A., Robert I. Colautti, Edward L. Mills, Kristen Holeck, Albert G. Ballert, and Hugh J. MacIsaac. 2003. “Ballast-Mediated Animal Introductions in the Laurentian Great Lakes: Retrospective and Prospective Analyses.” Canadian Journal of Fisheries and Aquatic Sciences 60(6):740–56. doi: 10.1139/f03-053.
  • Guo, Jiuhao, Yahong Dong, and Joseph H. W. Lee. 2020. “A Real Time Data Driven Algal Bloom Risk Forecast System for Mariculture Management.” Marine Pollution Bulletin 161:111731. doi: 10.1016/J.MARPOLBUL.2020.111731.
  • Hallegraeff, Gustaaf M. 2015. “Transport of Harmful Marine Microalgae via Ship’s Ballast Water: Management and Mitigation with Special Reference to the Arabian Gulf Region.” Aquatic Ecosystem Health and Management 18(3):290–98. doi: 10.1080/14634988.2015.1027138.
  • Hamer, John P. 2002. “Ballast Tank Sediments.” Invasive Aquatic Species of Europe. Distribution, Impacts and Management 232–34. doi: 10.1007/978-94-015-9956-6_24.
  • IMO. 2004. International Convention for the Control and Management of Ships’ Ballast Water and Sediments. International Maritime Organization. doi: 10.1017/CBO9781107415324.004.
  • Johengen, Thomas, David Reid, Gary Fahnenstiel, Hugh MacIsaac, Fred Dobbs, Martina Doblin, Greg Ruiz, Philip Jenkins, and Philip T. Jenkins. 2005. Assessment of Transoceanic NOBOB Vessels and Low-Salinity Ballast Water as Vectors for Non-Indigenous Species Introductions to the Great Lakes.
  • Leppäkoski, E., and S. Gollasch. 2006. Risk Assessment of Ballast Water Mediated Species Introductions - a Baltic Sea Approach. Report Prepared for HELCOM, Helsinki, Finland.
  • Lv, Baoyi, Yuxue Cui, Wen Tian, Jing Li, Bing Xie, and Fang Yin. 2018. “Abundances and Profiles of Antibiotic Resistance Genes as Well as Co-Occurrences with Human Bacterial Pathogens in Ship Ballast Tank Sediments from a Shipyard in Jiangsu Province, China.” Ecotoxicology and Environmental Safety 157:169–75. doi: 10.1016/J.ECOENV.2018.03.053.
  • Ma, Cheng, Chong Yao, En Zhe Song, and Shun Liang Ding. 2022. “Prediction and Optimization of Dual-Fuel Marine Engine Emissions and Performance Using Combined ANN with PSO Algorithms.” International Journal of Engine Research 23(4):560–76. doi: 10.1177/1468087421990476.
  • Maglić, Lovro, Damir Zec, and Vlado Frančić. 2016. “Ballast Water Sediment Elemental Analysis.” Marine Pollution Bulletin 103(1–2):93–100. doi: 10.1016/j.marpolbul.2015.12.042.
  • McCarthy, S. A., and F. M. Khambaty. 1994. “International Dissemination of Epidemic Vibrio Cholerae by Cargo Ship Ballast and Other Nonpotable Waters.” Applied and Environmental Microbiology 60(7):2597–2601.
  • MEPC. 2012. RESOLUTION MEPC.209 (63) 2012 Guidelines on Design and Construction to Facilitate Sediment Control on Ships (G12). Vol. 209.
  • National Research Council. 1996. Stemming the Tide: Controlling Introductions of Nonindigenous Species by Ships’ Ballast Water. Washington, DC: The National Academies Press.
  • Nichols, D. 2001. “Implications of the Introduction and the Transfer of Non-Indigenous Marine Species with Particular Reference to Canadian Marine Aquaculture.” School of Graduate Studies, Marine Studies, Memorial University of Newfoundland.
  • Özalp, Teoman. 1977. Gemi Yapısı ve Elemanları. İstanbul: İstanbul Teknik Üniversitesi Kütüphanesi Yayınları.
  • Özkurt, Özlem. 1999. “Deney Tasarımları ve İstatistiksel Veri Analizleri.” İstanbul Teknik Üniversitesi.
  • Pereira, Lucas Soares, Liang Yee Cheng, Gabriel Henrique de Souza Ribeiro, Pedro Henrique Saggioratto Osello, Fabio Kenji Motezuki, and Newton Narciso Pereira. 2021. “Experimental and Numerical Studies of Sediment Removal in Double Bottom Ballast Tanks.” Marine Pollution Bulletin 168. doi: 10.1016/j.marpolbul.2021.112399.
  • Raaymakers, Steve. 2002. “The Ballast Water Problem : Global Ecological , Economic and Human Health Impacts Paper Presented at the Dubai , UAE 16-18 Dec 2002.” 1–22.
  • Rani Das, Keya, and A. H. .. Rahmatullah Imon. 2016. “A Brief Review of Tests for Normality.” American Journal of Theoretical and Applied Statistics 5(1):5. doi: 10.11648/j.ajtas.20160501.12.
  • Sayyad Amin, Javad, Hossein Rajabi Kuyakhi, and Alireza Bahadori. 2019. “Prediction of Formation of Polycyclic Aromatic Hydrocarbon (PAHs) on Sediment of Caspian Sea Using Artificial Neural Networks.” Petroleum Science and Technology 37(18):1987–2000. doi: 10.1080/10916466.2018.1496111.
  • Shang, Lixia, Zhangxi Hu, Yunyan Deng, Yuyang Liu, Xinyu Zhai, Zhaoyang Chai, Xiaohan Liu, Zifeng Zhan, Fred C. Dobbs, and Ying Zhong Tang. 2019. “Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships’ Ballast Tanks.” Microorganisms 7(8):1–28. doi: 10.3390/microorganisms7080250.
  • Shiganova, T. A., Z. A. Mirzoyan, E. A. Studenikina, S. P. Volovik, I. Siokou-Frangou, S. Zervoudaki, E. D. Christou, A. Y. Skirta, and H. J. Dumont. 2001. “Population Development of the Invader Ctenophore Mnemiopsis Leidyi, in the Black Sea and in Other Seas of the Mediterranean Basin.” Marine Biology 139(3):431–45. doi: 10.1007/s002270100554.
  • Takahashi, C. K., N. G. G. S. Lourenço, T. F. Lopes, V. L. M. Rall, and C. a M. Lopes. 2008. “Ballast Water: A Review of the Impact on the World Public Health.” Journal of Venomous Animals and Toxins Including Tropical Diseases 14(3):393–408. doi: 10.1590/S1678-91992008000300002.
  • Tang, Ying Zhong, Lixia Shang, and Fred C. Dobbs. 2022. “Measuring Viability of Dinoflagellate Cysts and Diatoms with Stains to Test the Efficiency of Facsimile Treatments Possibly Applicable to Ships’ Ballast Water and Sediment.” Harmful Algae 114:102220. doi: 10.1016/J.HAL.2022.102220.
  • Wu, Huixian, Chen Chen, Qiong Wang, Junda Lin, and Junzeng Xue. 2017. “The Biological Content of Ballast Water in China: A Review.” Aquaculture and Fisheries 2(6):241–46. doi: 10.1016/J.AAF.2017.03.002.
  • Wu, Huixian, Chen Shen, Qiong Wang, Richard B. Aronson, Chen Chen, and Junzeng Xue. 2019. “Survivorship Characteristics and Adaptive Mechanisms of Phytoplankton Assemblages in Ballast Water.” Journal of Oceanology and Limnology 37(2):580–88. doi: 10.1007/s00343-019-7288-9.
  • YAZICI, Ayşe Canan, Ersin ÖĞÜŞ, Seyit ANKARALI, Sinan CANAN, Handan ANKARALI, and Zeki AKKUŞ. 2007. “Yapay Sinir Ağlarına Genel Bakış.” Türkiye Klinikleri Tıp Bilimleri Dergisi 27(1):65–71.
  • Yonsel, Fatma, Ceren Bilgin Guney, and Devrim Danisman Bulent. 2014. “A NEURAL NETWORK APPLICATION FOR A BALLAST WATER ELECTROCHLORINATION SYSTEM Fatma.” Fresenius Environmental Bulletin 23(12b):3353–61.
  • Yuan, Han, Peilin Zhou, and Ning Mei. 2017. “Numerical and Experimental Investigation on the Ballast Flushing System.” Ocean Engineering 130(December 2016):188–98. doi: 10.1016/j.oceaneng.2016.12.003.
APA Bilgin Güney C (2022). Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. , 209 - 230. 10.54926/gdt.1211008
Chicago Bilgin Güney Ceren Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. (2022): 209 - 230. 10.54926/gdt.1211008
MLA Bilgin Güney Ceren Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. , 2022, ss.209 - 230. 10.54926/gdt.1211008
AMA Bilgin Güney C Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. . 2022; 209 - 230. 10.54926/gdt.1211008
Vancouver Bilgin Güney C Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. . 2022; 209 - 230. 10.54926/gdt.1211008
IEEE Bilgin Güney C "Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar." , ss.209 - 230, 2022. 10.54926/gdt.1211008
ISNAD Bilgin Güney, Ceren. "Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar". (2022), 209-230. https://doi.org/10.54926/gdt.1211008
APA Bilgin Güney C (2022). Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. Gemi ve Deniz Teknolojisi, (222), 209 - 230. 10.54926/gdt.1211008
Chicago Bilgin Güney Ceren Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. Gemi ve Deniz Teknolojisi , no.222 (2022): 209 - 230. 10.54926/gdt.1211008
MLA Bilgin Güney Ceren Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. Gemi ve Deniz Teknolojisi, vol., no.222, 2022, ss.209 - 230. 10.54926/gdt.1211008
AMA Bilgin Güney C Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. Gemi ve Deniz Teknolojisi. 2022; (222): 209 - 230. 10.54926/gdt.1211008
Vancouver Bilgin Güney C Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar. Gemi ve Deniz Teknolojisi. 2022; (222): 209 - 230. 10.54926/gdt.1211008
IEEE Bilgin Güney C "Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar." Gemi ve Deniz Teknolojisi, , ss.209 - 230, 2022. 10.54926/gdt.1211008
ISNAD Bilgin Güney, Ceren. "Balast Tanklarında Sediman Birikimini Azaltacak Sistemin Optimizasyonuna Yönelik İstatistiksel Yaklaşımlar". Gemi ve Deniz Teknolojisi 222 (2022), 209-230. https://doi.org/10.54926/gdt.1211008