RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans

Yıl: 2023 Cilt: 47 Sayı: 1 Sayfa Aralığı: 74 - 83 Metin Dili: İngilizce DOI: 10.55730/1300-0152.2642 İndeks Tarihi: 22-03-2023

RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans

Öz:
Projecting from most cell surfaces, cilia serve as important hubs for sensory and signaling processes and have been linked to a variety of human disorders, including Bardet-Biedl Syndrome (BBS), Meckel-Gruber Syndrome (MKS), Nephronophthisis (NPHP), and Joubert Syndrome, and these diseases are collectively known as a ciliopathy. DCDC2 is a ciliopathy protein that localizes to cilia; nevertheless, our understanding of the role of DCDC2 in cilia is still limited. We employed C. elegans to investigate the function of C. elegans RPI-1, a Caenorhabditis elegans ortholog of human DCDC2, in cilia and found that C. elegans RPI-1 localizes to the entire ciliary axoneme, but is not present in the transition zone and basal body. We generated a null mutant of C. elegans rpi-1, and our analysis with a range of fluorescence-based ciliary markers revealed that DCDC2 and nephronophthisis 4 (NPHP-4/NPHP4) display functional redundant roles in regulating cilia length and cilia positions. Taken together, our analysis discovered a novel genetic interaction between two ciliopathy disease genes (RPI-1/DCDC2 and NPHP-4/NPHP4) in C. elegans.
Anahtar Kelime: DCDC2 cilia NPHP4 rare diseases

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST (2019). Cellular signalling by primary cilia in development, organ function and disease. Nature Reviews Nephrology 15: 199–219. https://doi.org/10.1038/s41581-019-0116-9
  • Bentley-Ford M, LaBonty M, Thomas HR, Haycraft CJ, Scott M et al. (2022). Evolutionarily conserved genetic interactions between nphp-4 and bbs-5 mutations exacerbate ciliopathy phenotypes. Genetics 220: iyab209. https://doi.org/10.1093/genetics/ iyab209
  • Blacque OE (2008). Intraflagellar transport: from molecular characterisation to mechanism. Frontiers in Bioscience- Landmark 13: 2633. https://doi.org/10.2741/2871
  • Brenner S (1974). The Genetics of Caenorhabditis Elegans. Genetics 77: 71–94. https://doi.org/10.1093/genetics/77.1.71
  • Cevik S, Kaplan OI, (2021). The Joubert syndrome protein CEP41 is excluded from the distal segment of cilia in C. elegans. MicroPublication Biology https://doi.org/10.17912/micropub. biology.000406
  • Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG et al. (2012). A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biology 14: 61–72. https://doi.org/10.1038/ncb2410
  • Culotti JG, Russell RL (1978). Osmotic Avoidance Defective Mutants of the Nematode Caenorhabditis Elegans. Genetics 90: 243– 256. https://doi.org/10.1093/genetics/90.2.243
  • Garbrecht J, Laos T, Holzer E Dillinger M, Dammermann A (2021). An acentriolar centrosome at the C. elegans ciliary base. Current Biology 31: 2418-2428.e8. https://doi.org/10.1016/j. cub.2021.03.023
  • Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA et al. (2011). A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nature Genetics 43: 776–784. https://doi.org/10.1038/ng.891
  • Girard M, Bizet AA, Lachaux A, Gonzales E, Filhol E et al. (2016). DCDC2 Mutations Cause Neonatal Sclerosing Cholangitis: Human Mutation 37: 1025–1029. https://doi.org/101002/ humu23031
  • Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS et al. (2016). Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis Journal of Hepatology 65: 1179–1187. https://doi.org/101016/ jjhep201607017
  • Grati M, Chakchouk I, Ma Q, Bensaid M, Desmidt A et al. (2015). A missense mutation in DCDC2 causes human recessive deafness DFNB66 likely by interfering with sensory hair cell and supporting cell cilia length regulation Human Molecular Genetics 24: 2482–2491. https://doi.org/101093/hmg/ddv009
  • Hartill V, Szymanska K, Sharif SM, Wheway G, Johnson CA (2017). Meckel–Gruber Syndrome: An Update on Diagnosis Clinical Management and Research Advances Frontiers in Pediatrics 5: 244. https://doi.org/103389/fped201700244
  • Hoefele J, Wolf MTF, O’Toole JF, Otto EA, Schultheiss U et al. (2007) Evidence of Oligogenic Inheritance in Nephronophthisis Journal of the American Society of Nephrology 18: 2789–2795. https://doi.org/101681/ASN2007020243
  • Horesh D, Sapir T, Francis F, Grayer Wolf S, Caspi M et al. (1999). Doublecortin a Stabilizer of Microtubules Human. Molecular Genetics 8: 1599–1610. https://doi.org/101093/hmg/891599
  • Jauregui AR, Barr MM (2005) Functional characterization of the C elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors. Experimental Cell Research 305: 333–342. https://doi.org/101016/jyexcr200501008
  • Jensen VL, Carter S, Sanders AAWM, Li C, Kennedy J et al. (2016) Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport PLOS Genetics 12: e1006469. https://doi.org/101371/journalpgen1006469
  • Kaplan OI, Molla-Herman A, Cevik S, Ghossoub R, Kida K et al. (2010). The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C elegans ciliary membrane transport. Journal of Cell Science 123: 3966–3977. https://doi. org/101242/jcs073908
  • Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating Proceedings of the National Academy of Sciences 90: 5519–5523. https://doi.org/101073/pnas90125519
  • Li C, Jensen VL, Park K, Kennedy J, Garcia-Gonzalo FR et al. (2016). MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLOS Biology 14: e1002416. https:// doi.org/101371/journalpbio1002416
  • Luo F, Tao Y (2018). Nephronophthisis: A review of genotype– phenotype correlation. Nephrology 23: 904–911. https://doi. org/101111/nep13393
  • Massinen S, Hokkanen M-E, Matsson H, Tammimies K, Tapia-Páez I et al. (2011). Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PloS One 6: e20580. https://doi.org/101371/ journalpone0020580
  • Meng H, Smith SD, Hager K, Held M, Liu J et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences 102: 17053–17058. https://doi. org/101073/pnas0508591102
  • Mijalkovic J, van Krugten J, Oswald F, Acar S, Peterman EJG (2018). Single-Molecule Turnarounds of Intraflagellar Transport at the C elegans Ciliary Tip. Cell Reports 25: 1701-1707e2. https:// doi.org/101016/jcelrep201810050
  • Parisi MA (2009). Clinical and molecular features of Joubert syndrome and related disorders. American Journal of Medical Genetics Part C Seminars in Medical Genetics 151C: 326–340. https://doi.org/101002/ajmgc30229
  • Perea-Romero I, Solarat C, Blanco-Kelly F (2022). Allelic overload and its clinical modifier effect in Bardet-Biedl syndrome npj. Genomic Medicine 7: 41. https://doi.org/101038/s41525-022- 00311-2
  • Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental Biology 117: 456–487. https://doi. org/101016/0012-1606(86)90314-3
  • Rosenbaum JL, Witman GB (2002). Intraflagellar transport. Nature Reviews Molecular Cell Biology 3: 813–825. https://doi. org/101038/nrm952
  • Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ et al. (2011). Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145: 513–528. https://doi.org/101016/jcell201104019
  • Scerri TS, Macpherson E, Martinelli A, Wa WC, Monaco AP et al. (2017). The DCDC2 deletion is not a risk factor for dyslexia. Translational Psychiatry 7: e1182. https://doi.org/101038/ tp2017151
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676–682. https://doi.org/101038/ nmeth2019
  • Schueler M, Braun DA, Chandrasekar G, Gee HY, Klasson TD et al. (2015). DCDC2 Mutations Cause a Renal-Hepatic Ciliopathy by Disrupting Wnt Signaling. The American Journal of Human Genetics 96: 81–92. https://doi.org/101016/jajhg201412002
  • Starich TA, Herman RK, Kari CK, Yeh WH, Schackwitz WS et al. (1995). Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139: 171–188. https://doi. org/101093/genetics/1391171
  • The Alliance of Genome Resources Consortium, Agapite J, Albou L-P, Aleksander S, Argasinska J et al. (2020). Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Research 48: D650–D658. https://doi. org/101093/nar/gkz813
  • Turan MG, Kantarci H, Temtek SD, Cakici O, Cevik S et al. (2022) Protocol for determining the average speed and frequency of kinesin and dynein-driven intraflagellar transport (IFT) in C elegans. STAR Protocols 3 (3): 101498. https://doi.org/101016/ jxpro2022101498
  • Valente EM, Rosti RO, Gibbs E, Gleeson JG (2014). Primary cilia in neurodevelopmental disorders. Nature Reviews Neurology 10: 27–36. https://doi.org/101038/nrneurol2013247
  • Williams CL, Li C, Kida K, Inglis PN, Mohan S et al. (2011). MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. Journal of Cell Biology 192: 1023–1041. https:// doi.org/101083/jcb201012116
  • Winkelbauer ME, Schafer JC, Haycraft CJ, Swoboda P, Yoder BK (2005). The C elegans homologs of nephrocystin-1 and nephrocystin-4 are cilia transition zone proteins involved in chemosensory perception. Journal of Cell Science 118: 5575– 5587. https://doi.org/101242/jcs02665
  • Yee LE, Garcia-Gonzalo FR, Bowie RV, Li C, Kennedy JK et al. (2015). Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling. PLoS Genetics 11: e1005627. https://doi.org/101371/ journalpgen1005627
  • Yi P, Li W-J, Dong M-Q, Ou G, (2017). Dynein-Driven Retrograde Intraflagellar Transport Is Triphasic in C elegans Sensory Cilia. Current Biology 27: 1448-1461e7. https://doi.org/101016/ jcub201704015
APA Kaplan O (2023). RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. , 74 - 83. 10.55730/1300-0152.2642
Chicago Kaplan Oktay Ismail RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. (2023): 74 - 83. 10.55730/1300-0152.2642
MLA Kaplan Oktay Ismail RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. , 2023, ss.74 - 83. 10.55730/1300-0152.2642
AMA Kaplan O RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. . 2023; 74 - 83. 10.55730/1300-0152.2642
Vancouver Kaplan O RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. . 2023; 74 - 83. 10.55730/1300-0152.2642
IEEE Kaplan O "RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans." , ss.74 - 83, 2023. 10.55730/1300-0152.2642
ISNAD Kaplan, Oktay Ismail. "RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans". (2023), 74-83. https://doi.org/10.55730/1300-0152.2642
APA Kaplan O (2023). RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. Turkish Journal of Biology, 47(1), 74 - 83. 10.55730/1300-0152.2642
Chicago Kaplan Oktay Ismail RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. Turkish Journal of Biology 47, no.1 (2023): 74 - 83. 10.55730/1300-0152.2642
MLA Kaplan Oktay Ismail RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. Turkish Journal of Biology, vol.47, no.1, 2023, ss.74 - 83. 10.55730/1300-0152.2642
AMA Kaplan O RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. Turkish Journal of Biology. 2023; 47(1): 74 - 83. 10.55730/1300-0152.2642
Vancouver Kaplan O RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans. Turkish Journal of Biology. 2023; 47(1): 74 - 83. 10.55730/1300-0152.2642
IEEE Kaplan O "RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans." Turkish Journal of Biology, 47, ss.74 - 83, 2023. 10.55730/1300-0152.2642
ISNAD Kaplan, Oktay Ismail. "RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans". Turkish Journal of Biology 47/1 (2023), 74-83. https://doi.org/10.55730/1300-0152.2642