Yıl: 2022 Cilt: 10 Sayı: 4 Sayfa Aralığı: 1059 - 1069 Metin Dili: İngilizce DOI: 10.29109/gujsc.1185766 İndeks Tarihi: 23-03-2023

Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method

Öz:
In this study, ZnO nanorods (ZnO-NR) were prepared on n-Si wafer by hydrothermal method. Structural and morphologic properties of ZnO nanostructures were investigated through XRD and SEM method. The illumination impacts on the current-voltage (I-V) measurements of the prepared Al/ZnO-NR/n-Si diode were explored in the dark and different illumination intensities (20–100 mW/cm2) between ± 1.5 V bias voltage range. The Schottky diode barrier height value had an increasing trend with increasing illumination intensity from 20 to 100 mW/cm2 while the ideality factor had a decreasing trend with the increase of photocurrent. The temporary photocurrent increases as illumination intensity increases. The slope (α) of the logI_ph-logP curve was obtained as 0.618 and this slope confirmed that this ZnO nanorod shows photoconducting behavior. The short-circuit current (I_sc) and open-circuit voltage (V_oc) values were obtained to be 774.08 μA and 0.24 V under 100 mW/cm2 illumination intensity, respectively. It was concluded that the prepared Al/ZnO-NR/n-Si diode can be used in the optoelectronic applications, especially for the photodiode industry.
Anahtar Kelime: Hydrothermal Zinc oxide Photovoltaic nanorod

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Hamid N, Suhaimi S, Othman MZ, Ismail WZW (2021) A Review on Thermal Evaporation Method to Synthesis Zinc Oxide as Photocatalytic Material. Nano Hybrids Compos 31:55–63. https://doi.org/10.4028/www.scientific.net/NHC.31.55
  • 2. Skowronski L, Ciesielski A, Olszewska A, et al (2020) Microstructure and optical properties of E- beam evaporated zinc oxide films-effects of decomposition and surface desorption. Materials (Basel) 13:1–17. https://doi.org/10.3390/MA13163510
  • 3. Müller R, Gelme O, Scholz JP, et al (2020) Epitaxial ZnO layer growth on Si(111) substrates with an intermediate AlN nucleation layer by methane-based chemical vapor deposition. Cryst Growth Des 20:6170–6185. https://doi.org/10.1021/acs.cgd.0c00907
  • 4. Naveed A, Haq U, Nadhman A, et al (2017) Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. https://doi.org/10.1155/2017/8510342
  • 5. Cheng K, Cheng G, Wang S, et al (2007) Surface states dominative Au Schottky contact on vertical aligned ZnO nanorod arrays synthesized by low-temperature growth. New J Phys 9:. https://doi.org/10.1088/1367-2630/9/7/214
  • 6. Yi F, Huang Y, Zhang Z, et al (2013) Photoluminescence and highly selective photoresponse of ZnO nanorod arrays. Opt Mater (Amst) 35:1532–1537. https://doi.org/10.1016/j.optmat.2013.03.018
  • 7. Shao Z, Li X (2016) Direct-current piezoelectric nanogenerator based on p-Si/n-ZnO heterojunction. Phys E Low-Dimensional Syst Nanostructures 77:44–47. https://doi.org/10.1016/j.physe.2015.11.003
  • 8. Sheikhi S, Aliannezhadi M, Shariatmadar Tehrani F (2022) Effect of precursor material, pH, and aging on ZnO nanoparticles synthesized by one-step sol–gel method for photodynamic and photocatalytic applications. Eur Phys J Plus 137:. https://doi.org/10.1140/epjp/s13360-021-02252-8
  • 9. Maria G, Mari D, Mineo G, et al (2022) Low-Cost , High-Yield ZnO Nanostars Synthesis for Pseudocapacitor Applications. 1–13
  • 10. Azmi ZH, Mohd Aris SN, Abubakar S, et al (2022) Effect of Seed Layer on the Growth of Zinc Oxide Nanowires by Chemical Bath Deposition Method. Coatings 12:. https://doi.org/10.3390/coatings12040474
  • 11. Serrà A, Zhang Y, Sepúlveda B, et al (2019) Highly active ZnO-based biomimetic fern-like microleaves for photocatalytic water decontamination using sunlight. Appl Catal B Environ 248:129–146. https://doi.org/10.1016/j.apcatb.2019.02.017
  • 12. Hajijamali Z, Khayatian A, Almasi Kashi M (2020) Etching of ZnO nanorods by ZnO nanoparticles and adjustment of morphological and UV photodetection properties. J Sol-Gel Sci Technol 95:109–118. https://doi.org/10.1007/s10971-020-05287-y
  • 13. Liao F, Han X, Zhang Y, et al (2017) Hydrothermal synthesis of flower-like zinc oxide microstructures with large specific surface area. J Mater Sci Mater Electron 28:16855–16860. https://doi.org/10.1007/s10854-017-7602-2
  • 14. Wang Y, Li X, Wang N, et al (2008) Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities. Sep Purif Technol 62:727–732. https://doi.org/10.1016/j.seppur.2008.03.035
  • 15. Rivera VF, Auras F, Motto P, et al (2013) Length-dependent charge generation from vertical arrays of high-aspect-ratio ZnO nanowires. Chem - A Eur J 19:14665–14674. https://doi.org/10.1002/chem.201204429
  • 16. Kwon J, Hong S, Lee H, et al (2013) Direct selective growth of ZnO nanowire arrays from inkjet- printed zinc acetate precursor on a heated substrate. Nanoscale Res Lett 8:1–6. https://doi.org/10.1186/1556-276X-8-489
  • 17. Saleh SM (2019) ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye. Spectrochim Acta - Part A Mol Biomol Spectrosc 211:141–147. https://doi.org/10.1016/j.saa.2018.11.065
  • 18. Bakrudeen HB, Tsibouklis J, Reddy BSR (2013) Facile fabrication of mesoporous ZnO nanospheres for the controlled delivery of captopril. J Nanoparticle Res 15:. https://doi.org/10.1007/s11051-013-1505-9
  • 19. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 2012:. https://doi.org/10.1155/2012/624520
  • 20. Wibowo A, Marsudi MA, Amal MI, et al (2020) ZnO nanostructured materials for emerging solar cell applications. RSC Adv 10:42838–42859. https://doi.org/10.1039/d0ra07689a
  • 21. Le AT, Ahmadipour M, Pung SY (2020) A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J Alloys Compd 844:156172. https://doi.org/10.1016/j.jallcom.2020.156172
  • 22. Chen HW, Yang HW, He HM, Lee YM (2015) ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: Structural, photoluminescence and field emission characteristics. J Phys D Appl Phys 49:. https://doi.org/10.1088/0022-3727/49/2/025306
  • 23. Jagadale SB, Patil VL, Vanalakar SA, et al (2018) Preparation, characterization of 1D ZnO nanorods and their gas sensing properties. Ceram Int 44:3333–3340. https://doi.org/10.1016/j.ceramint.2017.11.116
  • 24. Kwon DK, Porte Y, Ko KY, et al (2018) High-Performance Flexible ZnO Nanorod UV/Gas Dual Sensors Using Ag Nanoparticle Templates. ACS Appl Mater Interfaces 10:31505–31514. https://doi.org/10.1021/acsami.8b13046
  • 25. Rhoderick EH, Williams RH (1988) Metal-Semiconductor Contacts. Clarendon Press, Oxford
  • 26. Iwai H, Sze SM, Taur Y, Wong H (2013) MOSFETs. Wiley, New York
  • 27. Kaplan N, Taşcı E, Emrullahoğlu M, et al (2021) Analysis of illumination dependent electrical characteristics of α- styryl substituted BODIPY dye-based hybrid heterojunction. J Mater Sci Mater Electron 16738–16747. https://doi.org/10.1007/s10854-021-06231-8
  • 28. Şahin MF, Taşcı E, Emrullahoğlu M, et al (2021) Electrical, photodiode, and DFT studies of newly synthesized π-conjugated BODIPY dye-based Au/BOD-Dim/n-Si device. Phys B Condens Matter 614:. https://doi.org/10.1016/j.physb.2021.413029
  • 29. Tezcan AO, Eymur S, Taşcı E, et al (2021) Investigation of electrical and photovoltaic properties of Au/n-Si Schottky diode with BOD-Z-EN interlayer. J Mater Sci Mater Electron 32:12513– 12520. https://doi.org/10.1007/s10854-021-05886-7
  • 30. Turut A, Karabulut A, Ejderha K, Biyikli N (2015) Capacitance-conductance-current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures. Mater Sci Semicond Process 39:400–407. https://doi.org/10.1016/j.mssp.2015.05.025
  • 31. Tuğluoğlu N, Koralay H, Akgül KB, Çavdar (2016) Analysis of inhomogeneous device parameters using current–voltage characteristics of identically prepared lateral Schottky structures. Indian J Phys 90:43–48. https://doi.org/10.1007/s12648-015-0722-8
  • 32. İlhan M, Koç MM, Coşkun B, et al (2021) Cd dopant effect on structural and optoelectronic properties of TiO2 solar detectors. J Mater Sci Mater Electron 32:2346–2365. https://doi.org/10.1007/s10854-020-05000-3
  • 33. Özcan E, Topaloǧlu Aksoy B, Tanriverdi Eçik E, et al (2020) Fabrication of hybrid photodiode systems: BODIPY decorated cyclotriphosphazene covalently grafted graphene oxides. Inorg Chem Front 7:2920–2931. https://doi.org/10.1039/d0qi00468e
  • 34. Bouricha B, Souissi R, Bouguila N, et al (2019) Positive and negative photoconductivity in sprayed β-In2S3 thin films. Mater Res Express 6:116456. https://doi.org/10.1088/2053-1591/ab51c7
  • 35. Yakuphanoglu F, Aslam Farooq W (2011) Photoresponse and electrical characterization of photodiode based nanofibers ZnO and Si. Mater Sci Semicond Process 14:207–211. https://doi.org/10.1016/j.mssp.2011.02.017
APA GOKDEMIR TURAN N (2022). Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. , 1059 - 1069. 10.29109/gujsc.1185766
Chicago GOKDEMIR TURAN Neslihan Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. (2022): 1059 - 1069. 10.29109/gujsc.1185766
MLA GOKDEMIR TURAN Neslihan Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. , 2022, ss.1059 - 1069. 10.29109/gujsc.1185766
AMA GOKDEMIR TURAN N Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. . 2022; 1059 - 1069. 10.29109/gujsc.1185766
Vancouver GOKDEMIR TURAN N Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. . 2022; 1059 - 1069. 10.29109/gujsc.1185766
IEEE GOKDEMIR TURAN N "Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method." , ss.1059 - 1069, 2022. 10.29109/gujsc.1185766
ISNAD GOKDEMIR TURAN, Neslihan. "Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method". (2022), 1059-1069. https://doi.org/10.29109/gujsc.1185766
APA GOKDEMIR TURAN N (2022). Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10(4), 1059 - 1069. 10.29109/gujsc.1185766
Chicago GOKDEMIR TURAN Neslihan Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 10, no.4 (2022): 1059 - 1069. 10.29109/gujsc.1185766
MLA GOKDEMIR TURAN Neslihan Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol.10, no.4, 2022, ss.1059 - 1069. 10.29109/gujsc.1185766
AMA GOKDEMIR TURAN N Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2022; 10(4): 1059 - 1069. 10.29109/gujsc.1185766
Vancouver GOKDEMIR TURAN N Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2022; 10(4): 1059 - 1069. 10.29109/gujsc.1185766
IEEE GOKDEMIR TURAN N "Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method." Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10, ss.1059 - 1069, 2022. 10.29109/gujsc.1185766
ISNAD GOKDEMIR TURAN, Neslihan. "Photoresponse of the Al/n-Si Schottky Diode with Nanorod ZnO Interface Layer Prepared Using Hydrothermal Method". Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 10/4 (2022), 1059-1069. https://doi.org/10.29109/gujsc.1185766