Yıl: 2023 Cilt: 53 Sayı: 1 Sayfa Aralığı: 19 - 28 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5554 İndeks Tarihi: 23-03-2023

Effects of recurrent ketamine exposure on brain histopathology in juvenile rats

Öz:
Background/aim: Ketamine (KET) is a commonly used anesthetic agent. However, several previous studies reported that KET leads to neuronal damage in neurodevelopmental stages and has neuroprotective effects. The present experimental study aimed to determine the undesirable histopathological effects of KET in the cerebral cortex, striatum, and hippocampus after recurrent KET administration in juvenile rats. Materials and methods: After ethical approval was obtained, 32 juvenile male Wistar Albino rats were randomized into four groups: 1 mg/kg serum saline intraperitoneally (i.p.), 5 mg/kg KET i.p., 20 mg/kg KET i.p., and 50 mg/kg KET i.p. KET was administered for three consecutive days at three-h intervals in three doses. Ten days after the last KET dose, the rats were sacrificed. Cerebral hemispheres were fixed. Hematoxylin and eosin stain was used for morphometric analysis. Hippocampi were evaluated by immunohistochemistry with anticleaved caspase-3 antibodies. Statistical analysis was conducted with SPSS 21 software using the ANOVA test and Bonferroni post hoc analysis method. Results: The experimental study findings revealed no difference between the groups’ cell counts or sizes in cortical morphometry. No degenerative changes were observed in pyramidal and granular cells in the striatum. Mild gliosis was observed in the 20 mg/kg and 50 mg/kg KET administration groups. Immuno-histo-chemical analysis was conducted to determine apoptosis in the CA1 region of the hippocampus and revealed that caspase-3 positivity increased with the KET dose. However, there was no statistical difference between the groups. While it was lower than the control group in the 5 mg/kg KET group, it was similar to the control group in the 20 mg/kg KET group and higher in the 50 mg/kg KET group (p > 0.05). Conclusion: Repetitive KET exposure did not significantly affect juvenile cerebral morphology and apoptosis in hippocampal cells.
Anahtar Kelime: Brain injury apoptosis cleaved caspase-3 ketamine juvenile rat

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Gao M, Rejaei D, Liu H. Ketamine use in current clinical practice. Acta Pharmacologica Sinica 2016; 37 (7): 865-872. https://doi. org/10.1038/aps.2016.5
  • 2. Kohrs R, Durieux ME. Ketamine: Teaching an old drug new tricks. Anesthesia & Analgesia 1998; 87: 1186-1193. https://doi. org/10.1097/00000539-199811000-00039
  • 3. Hall RW, Shbarou RM. Drugs of choice for sedation and analgesia in the neonatal ICU. Clinical Perinatology 2009; 36 (2): 215- 226. https://doi.org/10.1016/j.clp.2009.04.001
  • 4. Durrmeyer X, Vutskits L, Anand KJ, Rimensberger PC. Use of analgesic and sedative drugs in the NICU: integrating clinical trials and laboratory data. Pediatric Research 2010; 67 (2): 117- 127. https://doi.org/10.1203/PDR.0b013e3181c8eef3
  • 5. Collo G, Pich ME. Ketamine enhances structural plasticity in human dopaminergic neurons: possible relevance for treatment-resistant depression. Neural Regeneration Research 2018; 13 (4): 645-646. https://doi.org/10.4103/1673- 5374.230288
  • 6. Kamp J, Olofsen E, Henthorn TK, van Velzen M, Niesters M et al. Ketamine Pharmacokinetics. Anesthesiology 2020; 133 (6): 1192-1213. https://doi.org/10.1097/ALN.0000000000003577
  • 7. Aligny C, Roux C, Dourmap N, Ramdani Y, Do-Rego JC et al. Ketamine alters cortical integration of GABAergic interneurons and induces long-term sex-dependent impairments in transgenic Gad67-GFP mice. Cell Death and Disease 2014; 5: e1311. https://doi.org/10.1038/cddis.2014.275
  • 8. Ponten E, Viberg H, Gordh T, Eriksson P, Fredriksson A. Clonidine abolishes the adverse effects on apoptosis and behaviour after neonatal ketamine exposure in mice. Acta Anaesthesiologica Scandinavica 2012; 56 (8): 1058-1065. https://doi.org/10.1111/ j.1399-6576.2012.02722.x
  • 9. Turner CP, Gutierrez S, Liu C, Miller L, Chou J et al. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience 2012; 210: 384-392. https://doi.org/ 10.1016/j. neuroscience.2012.02.015
  • 10. Cao SE, Tian J, Chen S, Zhang X, Zhang Y. Role of miR- 34c in ketamine-induced neurotoxicity in neonatal mice hippocampus. Cell Biology International 2015; 39 (2): 164-168. https://doi.org/ 10.1002/cbin.10349
  • 11. Jiang XL, Du BX, Chen J, Liu L, Shao WB et al. MicroRNA-34a negatively regulates anesthesia induced hippocampal apoptosis and memory impairment through FGFR1. International Journal of Clinical and Experimental Pathology 2014; 7 (10): 6760-6767.
  • 12. Paule MG, Li M, Allen RR, Liu F, Zou X et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicology and Teratology 2011; 33 (2): 220-230. https://doi.org/ 10.1016/j. ntt.2011.01.001
  • 13. Zou X, Patterson TA, Sadovova N, Twaddle NC, Doerge DR et al. Potential neurotoxicity of ketamine in the developing rat brain. Toxicological Sciences 2009; 108 (1): 149-158. https:// doi.org/10.1093/toxsci/kfn270
  • 14. Scallet AC, Schmued LC, Slikker W Jr, Grunberg N, Faustino PJ et al. Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicological Sciences 2004; 81 (2): 364-370. https://doi.org/10.1093/toxsci/kfh224
  • 15. Hayashi H, Dikkes P, Soriano SG. Repeated administration of ketamine may lead to neuronal degeneration in the developing rat brain. Paediatric Anaesthesia 2002; 12 (9): 770-774. https:// doi.org/10.1046/j.1460-9592.2002.00883.x
  • 16. Zou X, Patterson TA, Divine RL, Sadovova N, Zhang X et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. International Journal of Developmental Neuroscience 2009; 27 (7): 727-731. https:// doi.org/10.1016/j.ijdevneu.2009.06.010
  • 17. Slikker W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicological Sciences 2007; 98 (1): 145-158. https:// doi.org/ 10.1093/toxsci/kfm084
  • 18. Soriano SG, Liu Q, Li J, Liu JR, Han XH et al. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology 2010; 112: 1155-1163. https://doi.org/10.1097/ ALN.0b013e3181d3e0c2
  • 19. Liu FF, Zhao S, Liu P, Huo SP. Influence of mTOR signaling pathway on ketamine-induced injuries in the hippocampal neurons of rats. Neurological Research 2019; 41 (1): 77-86. https://doi.org/10.1080/01616412.2018.1531203
  • 20. Huang L, Liu Y, Jin W, Ji X, Dong Z. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCgamma-ERK signaling pathway in the developing brain. Brain Research 2012; 1476: 164-171. https://doi.org/10.1016/j.brainres.2012.07.059
  • 21. Li X, Li Y, Zhao J, Li L, Wang Y et al. Administration of ketamine causes autophagy and apoptosis in the rat fetal hippocampus and in PC12 cells. Frontiers in Cellular Neuroscience 2018; 12: 21. https://doi.org/10.3389/fncel.2018.00021
  • 22. Buratovic S, Stenerlow B, Sundell-Bergman S, Fredriksson A, Viberg H et al. Effects on adult cognitive function after neonatal exposure to clinically relevant doses of ionising radiation and ketamine in mice. British Journal of Anaesthesia 2018; 120 (3): 546-554. https://doi.org/10.1016/j.bja.2017.11.099
  • 23. Rudin M, Ben-Abraham R, Gazit V, Tendler Y, Tashlykov V et al. Single-dose ketamine administration induces apoptosis in neonatal mouse brain. Journal of Basic and Clinical Physiology and Pharmacology 2005; 16 (4): 231-243. https:// doi.org/10.1515/jbcpp.2005.16.4.231
  • 24. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic Pathology 2007; 35 (4): 495-516. https://doi. org/10.1080/01926230701320337
  • 25. Morana O, Wood W, Gregory CD. The Apoptosis Paradox in Cancer. International Journal of Molecular Sciences 2022; 23 (3): 1328. https://doi.org/10.3390/ijms23031328
  • 26. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nature Reviews Cancer 2006; 6 (6): 449-458. https://doi. org/10.1038/nrc1886
  • 27. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology 2015; 1: 7 (4): a026716. https://doi.org/10.1101/cshperspect.a026716
  • 28. Crowley LC, Waterhouse NJ. Detecting Cleaved Caspase-3 in Apoptotic Cells by Flow Cytometry. Cold Spring Harbor Protocols 2016; 2016 (11). https://doi.org/10.1101/pdb. prot087312
  • 29. de Heer P, de Bruin EC, Klein-Kranenbarg E, Albers RI, Marijnen CA et al. Caspase-3 activity predicts local recurrence in rectal cancer. Clinical Cancer Research 2007; 13 (19): 5810-5815. https://doi.org/10.1158/1078-0432.CCR-07-0343
  • 30. Noble P, Vyas M, Al-Attar A, Durrant S, Scholefield J et al. High levels of cleaved caspase-3 in colorectal tumour stroma predict good survival. British Journal of Cancer 2013; 108 (10): 2097- 2105. https://doi.org/10.1038/bjc.2013.166
  • 31. Wang J, Zhang X, Wei P, Zhang J, Niu Y et al. Livin, Survivin and Caspase 3 as early recurrence markers in non-muscle-invasive bladder cancer. World Journal of Urology 2014; 32 (6): 1477- 1484. https://doi.org/10.1007/s00345-014-1246-0
  • 32. Choudhury D, Autry AE, Tolias KF, Krishnan V. Ketamine: Neuroprotective or Neurotoxic? Frontiers in Neuroscience 2021; 15: 672526. 10.3. https://doi.org/389/fnins.2021.672526
  • 33. Sial OK, Parise EM, Parise LF, Gnecco T, Bolaños-Guzmán CA. Ketamine: The final frontier or another depressing end? Behavioural Brain Research 2020; 383: 112508. https://doi.org/ 10.1016/j.bbr.2020.112508
  • 34. Peng FZ, Fan J, Ge TT, Liu QQ, Li BJ. Rapid anti-depressant- like effects of ketamine and other candidates: Molecular and cellular mechanisms. Cell Proliferation 2020; 53 (5): e12804. https://doi.org/10.1111/cpr.12804
  • 35. Onaolapo AY, Onaolapo OJ, Nwoha PU. Alterations in behaviour, cerebral cortical morphology and cerebral oxidative stress markers following aspartame ingestion. Journal of Chemical Neuroanatomy 2016; 78: 42-56. https://doi.org/10.1016/j. jchemneu.2016.08.006
  • 36. Thangarajan S, Deivasigamani A, Natarajan SS, Krishnan P, Mohanan SK. Neuroprotective activity of L-theanine on 3-nitropropionic acid-induced neurotoxicity in rat striatum. International Journal of Neuroscience 2014; 124 (9): 673-684. https://doi.org/ 10.3109/00207454.2013.872642
  • 37. Chen VS, Morrison JP, Southwell MF, Foley JF, Bolon B et al. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicologic Pathology 2017; 45 (6): 705-744.
  • 38. Briner A, Nikonenko I, DeRoo M, Dayer A, Muller D et al. Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 2011; 115 (2): 282-293.
  • 39. Sengupta P. The laboratory rat: Relating its age with human’s. International Journal of Preventive Medicine 2013; 4 (6): 624- 630.
  • 40. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. Journal of Neuroscience 2003; 23 (3): 876-882. https://doi.org/10.1523/ JNEUROSCI.23-03-00876.2003
  • 41. Hicks RR , Smith DH, Lowenstein DH, Marie RS, McIntosh TK. Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. Journal of Neurotrauma 1993; 10 (4): 405-414. https://doi.org/ 10.1089/neu.1993.10.405
  • 42. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283 (5398): 70-74. https://doi.org/10.1126/science.283.5398.70
  • 43. Lyu D, Tang N, Womack AW, He YJ, Lin Q. Neonatal ketamine exposure-induced hippocampal neuroapoptosis in the developing brain impairs adult spatial learning ability. Neural Regeneration Research 2020; 15 (5): 880-886. https://doi. org/10.4103/1673-5374.268929
  • 44. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. Methods Molecular Biology 2014; 1180: 31-43. https://doi.org/10.1007/978-1-4939-1050-2_3
  • 45. Hofman FM, Taylor CR. Immunohistochemistry. Current Protocols in Immunology 2013; 18: 103:21.4.1-21.4.26. https:// doi.org/10.1002/0471142735.im2104s103
  • 46. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology 2013; 5 (4): a008656. https://doi.org/ 10.1101/cshperspect.a008656
  • 47. Zou X, Patterson TA, Divine RL, Sadovova N, Zhang X et al. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. International Journal of Developmental Neuroscience 2009; 27 (7): 727-731. https:// doi.org/10.1016/j.ijdevneu.2009.06.010
  • 48. Guzowski JF, Knierim JJ, Moser EI. Ensemble Dynamics of Hippocampal Regions CA3 and CA1. Neuron 2004; 44 (4): 581-584. https://doi.org/10.1016/j.neuron.2004.11.003
APA ARPACI A, OZKOÇER S, Gunes E, Elmas C, Işık B (2023). Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. , 19 - 28. 10.55730/1300-0144.5554
Chicago ARPACI AYSE HANDE,OZKOÇER SÜHEYLA ESRA,Gunes Emel,Elmas Cigdem,Işık Berrin Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. (2023): 19 - 28. 10.55730/1300-0144.5554
MLA ARPACI AYSE HANDE,OZKOÇER SÜHEYLA ESRA,Gunes Emel,Elmas Cigdem,Işık Berrin Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. , 2023, ss.19 - 28. 10.55730/1300-0144.5554
AMA ARPACI A,OZKOÇER S,Gunes E,Elmas C,Işık B Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. . 2023; 19 - 28. 10.55730/1300-0144.5554
Vancouver ARPACI A,OZKOÇER S,Gunes E,Elmas C,Işık B Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. . 2023; 19 - 28. 10.55730/1300-0144.5554
IEEE ARPACI A,OZKOÇER S,Gunes E,Elmas C,Işık B "Effects of recurrent ketamine exposure on brain histopathology in juvenile rats." , ss.19 - 28, 2023. 10.55730/1300-0144.5554
ISNAD ARPACI, AYSE HANDE vd. "Effects of recurrent ketamine exposure on brain histopathology in juvenile rats". (2023), 19-28. https://doi.org/10.55730/1300-0144.5554
APA ARPACI A, OZKOÇER S, Gunes E, Elmas C, Işık B (2023). Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. Turkish Journal of Medical Sciences, 53(1), 19 - 28. 10.55730/1300-0144.5554
Chicago ARPACI AYSE HANDE,OZKOÇER SÜHEYLA ESRA,Gunes Emel,Elmas Cigdem,Işık Berrin Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. Turkish Journal of Medical Sciences 53, no.1 (2023): 19 - 28. 10.55730/1300-0144.5554
MLA ARPACI AYSE HANDE,OZKOÇER SÜHEYLA ESRA,Gunes Emel,Elmas Cigdem,Işık Berrin Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. Turkish Journal of Medical Sciences, vol.53, no.1, 2023, ss.19 - 28. 10.55730/1300-0144.5554
AMA ARPACI A,OZKOÇER S,Gunes E,Elmas C,Işık B Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. Turkish Journal of Medical Sciences. 2023; 53(1): 19 - 28. 10.55730/1300-0144.5554
Vancouver ARPACI A,OZKOÇER S,Gunes E,Elmas C,Işık B Effects of recurrent ketamine exposure on brain histopathology in juvenile rats. Turkish Journal of Medical Sciences. 2023; 53(1): 19 - 28. 10.55730/1300-0144.5554
IEEE ARPACI A,OZKOÇER S,Gunes E,Elmas C,Işık B "Effects of recurrent ketamine exposure on brain histopathology in juvenile rats." Turkish Journal of Medical Sciences, 53, ss.19 - 28, 2023. 10.55730/1300-0144.5554
ISNAD ARPACI, AYSE HANDE vd. "Effects of recurrent ketamine exposure on brain histopathology in juvenile rats". Turkish Journal of Medical Sciences 53/1 (2023), 19-28. https://doi.org/10.55730/1300-0144.5554