Yıl: 2023 Cilt: 53 Sayı: 1 Sayfa Aralığı: 109 - 120 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5564 İndeks Tarihi: 24-03-2023

Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?

Öz:
Background/aim: Preterm births cause fetuses to be born without completing the development of their organs. Due to this undesirable situation, it is the pulmonary tissue which has to be most exposed to harmful effects of extrauterine environment. Early disappearance of the prophylactic and constructive effects of amniotic fluid (AF) on developing tissues, such as pulmonary tissue, facilitates the formation of pulmonary morbidities resulting from oxygen. Setting out from this knowledge, we wanted, in addition to assessing the beneficent effects of AF on pulmonary tissue, to study the importance of AF in morbidities of this tissue thought to originate from oxygen. Materials and methods: In this experimental study, while the study group was made up of the fetuses of pregnant rats exposed to hyperbaric oxygen, (hyperoxic pregnant rat fetuses-HPRF), the control group was formed of the fetuses of the rats pregnant in the usual room setting (normoxic pregnant rat fetuses-NPRF). The pulmonary and hepatic tissues taken from the fetuses of these pregnant rats on the 21st day of their pregnancy were compared biochemically and histologically. For biochemical assessment, total glutathione (tGSH), catalase (CAT), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α) values and for histopathological assessment, apoptosis, alveolar wall count (AWC), vena centralis count (VCC) were included. Results: Statistical significance was found in the pulmonary tissue values of tGSH on behalf of NPRF, and MDA on behalf of HPRF (p < 0.05). In liver tissue, statistical significance was detected in tGSH and CAT values in favor of NPRF and in MDA, and TNF-α values in favor of HPRF (p < 0.05). Conclusion: Our study has demonstrated that AF protects the pulmonary tissue from the harmful effects of oxygen in the intrauterine period. In addition, our data have suggested that the pulmonary tissue’s being deprived of the useful effects of AF owing to premature birth may be an important trigger in the occurrence of the pulmonary morbidities thought to result from oxygen.
Anahtar Kelime: Amniotic fluid hyperbaric oxygen oxidative stress bronchopulmonary dysplasia

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Escobar J, Cernada M, Vento M. Oxygen and Oxidative Stress in the Neonatal Period. Neoreviews 2011; 26(12): 613-624. https://doi.org/10.1542/neo.12-11-e613
  • 2. Keszler M, Sant’Anna G. Mechanical Ventilation and Bronchopulmonary Dysplasia. Clinics Perinatology 2015; 42(4): 781-796. https://doi.org/10.1016/j.clp.2015.08.006
  • 3. Ben-Hur J, Bernard T. Bronchopulmonary dysplasia. In: Richard A. Polin, MD, Mervin C. Yoder, MD (editors). Workbook in Practical Neonatology. 5th ed. Philadelphia, PA, USA: Elsevier Saunders; 2015. pp. 169-182.
  • 4. Friel JK, Friesen RW, Harding SV, Roberts LJ. Evidence of oxidative stress in full-term healthy infants. Pediatric Research 2004; 56(6): 878-882. https://doi.org/10.1203/01. PDR.0000146032.98120.43
  • 5. Maltepe E, Saugstad OD. Oxygen in health and disease: regulation of oxygen homeostasis; clinical implications. Pediatric Research 2009; 65(3): 261-268. https://doi. org/10.1203/PDR.0b013e31818fc83f
  • 6. Sultana Z, Maiti K, Aitken J, Morris J, Dedman L et al. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. American Journal of Reproductive Immunology 2017; 77(5): 105-114. https://doi.org/10.1111/ aji.12653
  • 7. Novakovic TR, Dolicanin ZC, Djordjevic NZ. Effects of maternal subclinical hypothyroidism on amniotic fluid cells oxidative status. Reproductive Toxicology 2018; 78(6): 97-101. https://doi. org/10.1016/j.reprotox.2018.04.002
  • 8. Tipple TE, Ambalavanan N. Oxygen Toxicity in the Neonate: Thinking Beyond the Balance. Clinics Perinatology 2019; 46(3): 435-437. https://doi.org/10.1016/j.clp.2019.05.001
  • 9. Vento M, Aguar M, Escobar J, Arduini A, Escrig R et al. Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxidants Redox Signaling 2009; 11(12): 2945-2955. https://doi.org/10.1089/ars.2009.2671
  • 10. Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A et al. The chemistry of cell signaling by reactive oxygen species and nitrogen species and 4-hydroxynonenal. Archives of Biochemistry and Biophysics 2008; 477(2): 183-195 . https://doi. org/10.1016/j.abb.2008.06.011
  • 11. Niedermaier S, Hilgendorff A. Bronchopulmonary dysplasia- an overview about pathophysiologic concepts. Molecular and Cellular Pediatrics 2015; 2(1): 2. https://doi.org/10.1186/s40348- 015-0013-7
  • 12. Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Seminars in Neonatology 2003; 8(1): 39-49. https:// doi.org/10.1016/s1084-2756(02)00194-x
  • 13. Schock BC, Sweet DG, Ennis M, Warner JA, Young IS et al. Oxidative stress and increased type-IV collagenase levels in bronchoalveolar lavage fluid from newborn babies. Pediatric Research 2001; 50(1): 29-33. https://doi.org/10.1203/00006450- 200107000-00008
  • 14. Moore TA, Ahmad IM, Schmid KK, Berger AM, Ruiz RJ et al. Oxidative Stress Levels Throughout Pregnancy, at Birth, and in the Neonate. Biological Research for Nursing 2019; 21(5): 485- 494. https://doi.org/10.1177/1099800419858670
  • 15. Myatt L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010; 31(3): 66- 69. https://doi.org/10.1016/j.placenta.2009.12.021
  • 16. Smith LE. Pathogenesis of retinopathy of prematurity. Growth Hormone IGF Research 2004; 14(6): 140-144. https://doi. org/10.1016/j.ghir.2004.03.030
  • 17. Fleck BW, McIntosh N. Retinopathy of prematurity: recent developments. Neoreviews 2009; 10(3); 20-30. https://doi. org/10.1542/neo.10-1-e20
  • 18. Grisafi D, Pozzobon M, Dedja A, Vanzo V, Tomanin R et al. Human amniotic fluid stem cells protect rat lungs exposed to moderate hyperoxia. Pediatric Pulmonology 2013; 48(11): 1070- 1080. https://doi.org/10.1002/ppul.22791
  • 19. Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R et al. Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. American Journal of Obstetrics and Gynecology 2012; 206(5): 8-15. https://doi.org/10.1016/j. ajog.2012.02.038
  • 20. Candilera V, Bouchè C, Schleef J, Pederiva F. Lung growth factors in the amniotic fluid of normal pregnancies and with congenital diaphragmatic hernia. Journal Maternal Fetal Neonatal Medicine 2016; 29(13): 2104-2108. https://doi.org/10.3109/14767058.2015 .1076387
  • 21. Bedaiwy MA, Burlingame JM, Hussein M, Flyckt R, Assad R et al. Assessment of vascular endothelial growth factor, basic fibroblast growth factor, and transforming growth factor levels in amniotic fluid. The Journal of Reproductive Medicine 2012; 57(10): 405-410.
  • 22. Porreco RP, Bradshaw C, Sarkar S, Jones OW. Enhanced Growth of amniotic fluid cells in presence of fibroblast growth factor. Obstetrics & Gynecology 1980; 55(1): 55-59.
  • 23. Gospodarowicz D, Moran JS, Owashi ND. Effects of fibroblast growth factor and epidermal growth factor on the rate of growth of amniotic fluid-derived cells. The Journal of Clinical Endocrinology and Metabolism 1977; 44(4): 651-659. https:// doi.org/10.1210/jcem-44-4-651
  • 24. Da Sacco S, De Filippo RE, Perin L. Amniotic fluid as a source of pluripotent and multipotent stem cells for organ regeneration. Current Opinion in Organ Transplantation 2011; 16(1): 101-105. https://doi.org/10.1097/MOT.0b013e3283424f6e
  • 25. Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLOS One 2010; 5(2): e9357. https://doi.org/10.1371/journal. pone.0009357
  • 26. Lan YW, Yang JC, Yen CC, Huang TT, Chen YC et al. Predifferentiated amniotic fluid mesenchymal stem cells enhance lung alveolar epithelium regeneration and reverse elastase- induced pulmonary emphysema. Stem Cell Research and Therapy 2019; 10(1): 163-171. https://doi.org/10.1186/s13287- 019-1282-1
  • 27. ChengFC,TaiMH,SheuML,ChenCJ,YangDYetal.Enhancement of regeneration with glia cell line-derived neurotrophic factor- transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. Journal of Neurosurgery 2010; 112(4): 868-879. https://doi.org/10.3171/2009.8.JNS09850
  • 28. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008; 26(11): 2902-2911. https://doi.org/10.1634/stemcells.2008-0090
  • 29. Murphy SV, Atala A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Seminars in Reproductive Medicine 2013; 31(1): 62-68. https://doi. org/10.1055/s-0032-1331799
  • 30. Guven A, Gundogdu G, Uysal B, Cermik H, Kul M et al. Hyperbaric oxygen therapy reduces the severity of necrotizing enterocolitis in a neonatal rat model. Journal of Pediatric Surgery 2009; 44(3): 534-540. https://doi.org/10.1016/j. jpedsurg.2008.06.008.
  • 31. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry 1968; 25(7): 192-205. https://doi. org/10.1016/0003-2697(68)90092-4
  • 32. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 1979; 95(9): 351–358. https://doi.org/10.1016/0003- 2697(79)90738-3
  • 33. Ozdemir A, Bastug O, Cilenk KT, Korkmaz L, Korkut S et.al. Can lycopene eliminate the harmful effects of hyperoxia in an immature brain? Archivos Argentinos de Pediatria 2019; 117(4): 237-244. https://doi.org/10.5546/aap.2019.eng.237
  • 34. Bastug O, Fatih Sonmez M, Ozturk MA, Korkmaz L, Kesici H et. al. Effects of Lycopene in Hyperoxia-Induced Lung Injury in Newborn Rats. International Journal for Vitamin and Nutrition Research 2018; 88(10): 270-280. https://doi.org/10.1024/0300- 9831/a000238
  • 35. Ballard HO, Bernard P, Qualls J, Everson W, Shook LA. Azithromycin protects against hyperoxic lung injury in neonatal rats. Journal of Investigative Medicine 2007; 55(11): 299–305. https://doi.org/10.2310/6650.2007.00011
  • 36. Steven H. Abman, MD. Bronchopulmonary dysplasia. In: Kending and Chernick’s, (editors). Disorders of the Respiratory Tract in Children. 8th ed. Philadelphia, PA, USA: Elsevier Saunders; 2012. pp. 336-398.
  • 37. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. American Journal of Physiology Lung Cellular and Molecular Physiology 2000; 279(6): 1005-1028. https://doi. org/10.1152/ajplung.2000.279.6.L1005
  • 38. Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet 2006; 368(9543): 1271-1283. https://doi.org/10.1016/S0140- 6736(06)69525-1
  • 39. Welty SE. Is Oxidant Stress in the Causal Pathway to Bronchopulmonary Dysplasia? NeoReviews 2000; 1(1): 6-10. https://doi.org/10.1542/neo.1-1-e6
  • 40. Rabi Y, Singhal N, Nettel-Aguirre A. Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. The Journal of Pediatrics 2011; 128(2): 374-381. https:// doi.org/10.1542/peds.2010-3130
  • 41. Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG et al. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. The New England Journal of Medicine 2010; 362(21): 1970-1979. https://doi. org/10.1056/NEJMoa0911781
  • 42. Stenson BJ, Tarnow-Mordi WO, Darlow BA, Simes J, Juszczak E et al. Oxygen saturation and outcomes in preterm infants. The New England Journal of Medicine 2013; 368(22) :2094- 2104. https://doi.org/10.1056/NEJMoa1302298
  • 43. Taglauer E, Abman SH, Keller RL. Recent advances in antenatal factors predisposing to bronchopulmonary dysplasia. Seminars in Perinatology 2018; 42(7): 413-424. https://doi.org/10.1053/j. semperi.2018.09.002
  • 44. Rozance PJ, Seedorf GJ, Brown A, Roe G, O’Meara MC et al. IUGR decreased pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. American Journal of Physiology 2011; 301(6): 860-871. https://doi.org/10.1152/ajplung.00197.2011
  • 45. Sun L, Marti HH, Veltkamp R. Hyperbaric oxygen reduces tissue hypoxia and hypoxia-inducible factor-1 alpha expression in focal cerebral ischemia. Stroke 2008; 39(3): 1000-1006. https://doi.org/10.1161/STROKEAHA.107.490599
  • 46. Novakovic TR, Dolicanin ZC, Djordjevic NZ. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism. The Journal of Maternal Fetal and Neonatal Medicine 2019; 32(7): 1105-1110. https://doi.org/10.1080/147 67058.2017.1400005
  • 47. Mustafa MD, Pathak R, Ahmed T, Ahmed RS, Tripathi AK et al. Association of glutathione S-transferase M1 and T1 gene polymorphisms and oxidative stress markers in preterm labor. Clinical Biochemistry 2010; 43(13-14): 1124-1128. https://doi. org/10.1016/j.clinbiochem.2010.06.018
  • 48. Cinkaya A, Keskin HL, Buyukkagnici U, Gungor T, Keskin EA et al. Maternal plasma total antioxidant status in preterm labor. Journal of Obstetrics and Gynaecology Research 2010; 36(6): 1185-1188. https://doi.org/10.1111/j.1447- 0756.2010.01300.x
  • 49. Mei Y, Chen C, Dong H, Zhang W, Wang Y et al. Treatment of Hyperoxia-Induced Lung Injury with Lung Mesenchymal Stem Cells in Mice. Stem Cells International 2018; 2018: 5976519. https://doi.org/10.1155/2018/5976519
  • 50. Aceti A, Beghetti I, Martini S, Faldella G, Corvaglia L. Oxidative Stress and Necrotizing Enterocolitis: Pathogenetic Mechanisms, Opportunities for Intervention, and Role of Human Milk. Oxidative Medicine and Cellular Longevity 2018; 2(7): 7397659. https://doi.org/10.1155/2018/7397659
  • 51. Oter S, Korkmaz A, Topal T, Ozcan O, Sadir S et al. Correlation between hyperbaric oxygen exposure pressures and oxidative parameters in rat lung, brain, and erythrocytes. Clinical Biochemistry 2005; 38(8): 706-711. https://doi.org/10.1016/j. clinbiochem.2005.04.005
APA korkmaz l, Alan C, Topal İ, tayfur m, Bozkurt A, Gürsul C, Baştuğ O (2023). Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. , 109 - 120. 10.55730/1300-0144.5564
Chicago korkmaz levent,Alan Cumali,Topal İsmail,tayfur mahir,Bozkurt Aliseydi,Gürsul Cebrail,Baştuğ Osman Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. (2023): 109 - 120. 10.55730/1300-0144.5564
MLA korkmaz levent,Alan Cumali,Topal İsmail,tayfur mahir,Bozkurt Aliseydi,Gürsul Cebrail,Baştuğ Osman Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. , 2023, ss.109 - 120. 10.55730/1300-0144.5564
AMA korkmaz l,Alan C,Topal İ,tayfur m,Bozkurt A,Gürsul C,Baştuğ O Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. . 2023; 109 - 120. 10.55730/1300-0144.5564
Vancouver korkmaz l,Alan C,Topal İ,tayfur m,Bozkurt A,Gürsul C,Baştuğ O Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. . 2023; 109 - 120. 10.55730/1300-0144.5564
IEEE korkmaz l,Alan C,Topal İ,tayfur m,Bozkurt A,Gürsul C,Baştuğ O "Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?." , ss.109 - 120, 2023. 10.55730/1300-0144.5564
ISNAD korkmaz, levent vd. "Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?". (2023), 109-120. https://doi.org/10.55730/1300-0144.5564
APA korkmaz l, Alan C, Topal İ, tayfur m, Bozkurt A, Gürsul C, Baştuğ O (2023). Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. Turkish Journal of Medical Sciences, 53(1), 109 - 120. 10.55730/1300-0144.5564
Chicago korkmaz levent,Alan Cumali,Topal İsmail,tayfur mahir,Bozkurt Aliseydi,Gürsul Cebrail,Baştuğ Osman Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. Turkish Journal of Medical Sciences 53, no.1 (2023): 109 - 120. 10.55730/1300-0144.5564
MLA korkmaz levent,Alan Cumali,Topal İsmail,tayfur mahir,Bozkurt Aliseydi,Gürsul Cebrail,Baştuğ Osman Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. Turkish Journal of Medical Sciences, vol.53, no.1, 2023, ss.109 - 120. 10.55730/1300-0144.5564
AMA korkmaz l,Alan C,Topal İ,tayfur m,Bozkurt A,Gürsul C,Baştuğ O Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. Turkish Journal of Medical Sciences. 2023; 53(1): 109 - 120. 10.55730/1300-0144.5564
Vancouver korkmaz l,Alan C,Topal İ,tayfur m,Bozkurt A,Gürsul C,Baştuğ O Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?. Turkish Journal of Medical Sciences. 2023; 53(1): 109 - 120. 10.55730/1300-0144.5564
IEEE korkmaz l,Alan C,Topal İ,tayfur m,Bozkurt A,Gürsul C,Baştuğ O "Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?." Turkish Journal of Medical Sciences, 53, ss.109 - 120, 2023. 10.55730/1300-0144.5564
ISNAD korkmaz, levent vd. "Can amniotic fluid protect developing fetal lungs against the harmful effects of oxidative stress?". Turkish Journal of Medical Sciences 53/1 (2023), 109-120. https://doi.org/10.55730/1300-0144.5564