Yıl: 2023 Cilt: 53 Sayı: 1 Sayfa Aralığı: 130 - 141 Metin Dili: İngilizce DOI: 10.55730/1300-0144.5566 İndeks Tarihi: 24-03-2023

Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension

Öz:
Background/aim: Pulmonary arterial hypertension (PAH) is characterized by maladaptation of pulmonary vasculature which is leading to right ventricular hypertrophy and heart failure. miRNAs play a crucial role in the regulation of many diseases such as viral infection, cancer, cardiovascular diseases, and pulmonary hypertension (PH). In this study, we aimed to investigate the expression pattern of eight human plasma miRNAs (hsa-miR-21-3p, hsa-miR-143- 3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsa- miR-206, hsa-miR-210-3p) in mild-to-severe PH patients and healthy controls. Materials and methods: miRNAs were extracted from the peripheral plasma of the PH patients (n: 44) and healthy individuals (n: 30) by using the miRNA Isolation Kit. cDNA was synthesized using All in-One First strand cDNA Synthesis Kit. Expression of the human plasma hsa-miR- 21-3p, hsa-miR-143-3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204- 3p, hsa-miR-206, hsa-miR- 210-3p, and miRNAs were analyzed by qRT-PCR. Results: According to our results, in PH patients hsa-miR-21-3p and hsa-miR-143-3p expression levels were decreased by 4.7 and 2.3 times, respectively. No significant changes were detected in hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsa- miR-206, and hsa-miR-210-3p expression levels between PH and control groups. In addition, considering the severity of the disease, it was observed that the decrease in miR-138, miR-143, miR-145, miR-190, mir-204, mir-206 and miR-208 expressions was significant in patients with severe PH. Conclusion: In the early diagnosis of PAH, hsa-miR-21-3p and especially hsa-miR-143-3p in peripheral plasma can be considered as potential biomarkers.
Anahtar Kelime: Pulmonary hypertension miRNA hsa-miR-21-3p hsa-miR-143-3p biomarker vascular remodeling

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Barst RJ, McGoon MD, Elliott CG, Foreman AJ, Miller DP et al. Survival in childhood pulmonary arterial hypertension: Insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management. Circulation 2012;125(1):113–122. https://doi.org/10.1161/ CIRCULATIONAHA.111.026591
  • 2. Kayıkçıoğlu M. Pulmoner hipertansiyonda etiyopatogenez: İnflamasyon, vasküler yeniden şekillenme. Anadolu Kardiyoloji Dergisi 2010;10:5–8. https://doi.org/10.5152/akd.2010.113 (in Turkish).
  • 3. Bienertova-Vasku J, Novak J, Vasku A. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. Journal of the American Society of Hypertension : JASH 2015;9(3):221–234. https://doi.org/10.1016/j. jash.2014.12.011
  • 4. Nakanishi N. 2009 ESC/ERS pulmonary hypertension guidelines and connective tissue disease. Allergology International 2011;60(4):419–424. https://doi.org/10.2332/ allergolint.11-RAI-0362
  • 5. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nature genetics 2000;26(1):81–84. https://doi. org/10.1038/79226
  • 6. Sztrymf B, Coulet F, Girerd B, Yaici A, Jais X et al. Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. American Journal of Respiratory and Critical Care Medicine 2008;177(12):1377–1383. https://doi. org/10.1164/rccm.200712-1807OC
  • 7. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. The European respiratory journal 2019;53(1). https://doi. org/10.1183/13993003.01913-2018
  • 8. Mutlu Z, Kayıkçıoğlu M, Nalbantgil S, Vuran Ö, Kemal H et al. Sequencing of mutations in the serine/threonine kinase domain of the bone morphogenetic protein receptor type 2 gene causing pulmonary arterial hypertension. Anatolian Journal of Cardiology 2016;16(7):491–496. https://doi. org/10.5152/AnatolJCardiol.2015.6297
  • 9. Zhou G, Chen T, Raj JU. MicroRNAs in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology 2015;52(2):139–151. https://doi. org/10.1165/rcmb.2014-0166TR
  • 10. Girerd B, Montani D, Coulet F, Sztrymf B, Yaici A et al. Clinical outcomes of pulmonary arterial hypertension in patients carrying an ACVRL1 (ALK1) mutation. American journal of respiratory and critical care medicine 2010;181(8):851–61. https://doi.org/10.1164/RCCM.200908-1284OC
  • 11. Pousada G, Baloira A, Vilariño C, Cifrian JM, Valverde D. Novel mutations in BMPR2, ACVRL1 and KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hypertension. PLoS ONE 2014;9(6):e100261. https://doi. org/10.1371/journal.pone.0100261
  • 12. Courboulin A, Paulin R, Giguère NJ, Saksouk N, Perreault T et al. Role for miR-204 in human pulmonary arterial hypertension. Journal of Experimental Medicine 2011;208(3):535–548. https://doi.org/10.1084/jem.20101812
  • 13. Jalali S, Ramanathan GK, Parthasarathy PT, Aljubran S, Galam L et al. Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PloS one 2012;7(10):e46808. https://doi.org/10.1371/journal.pone.0046808
  • 14. Herrera-Rivero M, Zhang R, Heilmann-Heimbach S, Mueller A, Bagci S et al. Circulating microRNAs are associated with Pulmonary Hypertension and Development of Chronic Lung Disease in Congenital Diaphragmatic Hernia. Scientific Reports 2018;8(1):1-11. https://doi.org/10.1038/s41598-018-29153-8
  • 15. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I et al. 2015 ESC/ ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. European Heart Journal 2016;37(1):67–119. https://doi.org/10.1093/eurheartj/ehv317
  • 16. Santos-Ferreira CA, Abreu MT, Marques CI, Gonçalves LM, Baptista R et al. Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges. JACC: Basic to Translational Science 2020;5(11):1149–1162.
  • 17. Miao C, Chang J, Zhang G. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Molecular Biology Reports 2018;45(6):2883–2896. https://doi. org/10.1007/s11033-018-4335-0
  • 18. Wu D, Talbot CC, Liu Q, Jing ZC, Damico RL et al. Identifying microRNAs targeting Wnt/β-catenin pathway in end- stage idiopathic pulmonary arterial hypertension. Journal of molecular medicine 2016;94(8):875–885. https://doi. org/10.1007/S00109-016-1426-Z
  • 19. Wei C, Henderson H, Spradley C, Li L, Kim I-K et al. Circulating miRNAs as Potential Marker for Pulmonary Hypertension. PLoS ONE 2013;8(5):e64396. https://doi.org/10.1371/journal. pone.0064396
  • 20. Ben-Nun D, Buja LM, Fuentes F. Prevention of heart failure with preserved ejection fraction (HFpEF): reexamining microRNA-21 inhibition in the era of oligonucleotide-based therapeutics. Cardiovascular Pathology 2020;1(49):1-11. https://doi.org/10.1016/j.carpath.2020.107243
  • 21. Caruso P, MacLean MR, Khanin R, McClure J, Soon E et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arteriosclerosis, thrombosis, and vascular biology 2010;30(4):716–723. https://doi.org/10.1161/ ATVBAHA.109.202028
  • 22. Yang S, Banerjee S, Freitas A de, Cui H, Xie N et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. American Journal of Physiology-Lung Cellular and Molecular Physiology 2012; 302(6): L521–L529. https:// doi.org/10.1152/ajplung.00316.2011
  • 23. Iannone L, Zhao L, Dubois O, Duluc L, Rhodes CJ et al. miR- 21/DDAH1 pathway regulates pulmonary vascular responses to hypoxia. Biochemical Journal 2014;462(1):103–112. https://doi. org/10.1042/BJ20140486
  • 24. Zhu B, Gong Y, Yan G, Wang D, Qiao Y et al. Down-regulation of lncRNA MEG3 promotes hypoxia-induced human pulmonary artery smooth muscle cell proliferation and migration via repressing PTEN by sponging miR-21. Biochemical and Biophysical Research Communications 2018;495(3):2125– 2132. https://doi.org/10.1016/j.bbrc.2017.11.185
  • 25. Green DE, Murphy TC, Kang B-Y, Searles CD, Hart CM. PPARγ Ligands Attenuate Hypoxia-Induced Proliferation in Human Pulmonary Artery Smooth Muscle Cells through Modulation of MicroRNA-21. West J, editor. PLOS ONE 2015;10(7):e0133391. https://doi.org/10.1371/journal.pone.0133391
  • 26. Parikh VN, Jin RC, Rabello S, Gulbahce N, White K et al. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: Results of a network bioinformatics approach. Circulation 2012;125(12):1520–1532. https://doi. org/10.1161/CIRCULATIONAHA.111.060269
  • 27. Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. American journal of physiology Lung cellular and molecular physiology 2010;299(6):L861-L871. https://doi.org/10.1152/ ajplung.00201.2010
  • 28. Grunig G, Eichstaedt CA, Verweyen J, Durmus N, Saxer S et al. Circulating MicroRNA markers for pulmonary hypertension in supervised exercise intervention and nightly oxygen intervention. Frontiers in Physiology 2018;1(9):1-13. https:// doi.org/10.3389/fphys.2018.00955
  • 29. Wuttge DM, Carlsen AL, Teku G, Wildt M, Rådegran G et al. Circulating plasma microRNAs in systemic sclerosis- associated pulmonary arterial hypertension. Rheumatology 2022;61(1):309–318. https://doi.org/10.1093/rheumatology/ keab300
  • 30. Boettger T, Beetz N, Kostin S, Schneider J, Krüger M et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. The Journal of clinical investigation 2009;119(9):2634–2647. https://doi.org/10.1172/JCI38864
  • 31. Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle- modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. Journal of Human Hypertension 2014;28(8):510–516. https://doi.org/10.1038/ jhh.2013.117
  • 32. Deng L, Blanco FJ, Stevens H, Lu R, Caudrillier A et al. MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circulation Research 2015;117(10):870–883. https://doi. org/10.1161/CIRCRESAHA.115.306806
  • 33. Wang H, Paulsen MJ, Hironaka CE, Shin HS, Farry JM et al. Natural heart regeneration in a neonatal rat myocardial infarction model. Cells 2020;9(1):229. https://doi.org/10.3390/ CELLS9010229
  • 34. Wang L, Zhou Y, Li MX, Zhu YP. Expression of hypoxia-inducible factor-1α, endothelin-1 and adrenomedullin in newborn rats with hypoxia-induced pulmonary hypertension. Experimental and Therapeutic Medicine 2014;8(1):335–339. https://doi. org/10.3892/etm.2014.1728
  • 35. Tang B, Tang M ming, Xu Q mei, Guo J lu, Xuan L et al. MicroRNA-143–5p modulates pulmonary artery smooth muscle cells functions in hypoxic pulmonary hypertension through targeting HIF-1α. Journal of Biosciences 2020;45(1):1–9. https:// doi.org/10.1007/s12038-020-9992-1
  • 36. Hong Z, Chen K-H, DasGupta A, Potus F, Dunham-Snary K et al. MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. American journal of respiratory and critical care medicine 2017;195(4):515–529. https://doi.org/10.1164/rccm.201604-0814OC
  • 37. Liu J-J, Zhang H, Xing F, Tang B, Wu S-L et al. MicroRNA-138 promotes proliferation and suppresses mitochondrial depolarization in human pulmonary artery smooth muscle cells through targeting TASK-1. Molecular medicine reports 2018;17(2):3021–3027. https://doi.org/10.3892/mmr.2017.8200
  • 38. Sarrion I, Milian L, Juan G, Ramon M, Furest I et al. Role of circulating miRNAs as biomarkers in idiopathic pulmonary arterial hypertension: Possible relevance of miR-23a. Oxidative Medicine and Cellular Longevity 2015;1(2015):1–10. https://doi. org/10.1155/2015/792846
  • 39. Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L et al. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circulation research 2012;111(3):290–300. https://doi.org/10.1161/ CIRCRESAHA.112.267591
  • 40. Li S-S, Ran Y-J, Zhang D-D, Li S-Z, Zhu D. MicroRNA-190 regulates hypoxic pulmonary vasoconstriction by targeting a voltage-gated K + channel in arterial smooth muscle cells. Journal of cellular biochemistry 2014;115(6):1196–1205. https://doi.org/10.1002/jcb.24771
  • 41. Blissenbach B, Nakas CT, Krönke M, Geiser T, Merz TM et al. Hypoxia-induced changes in plasma micro-RNAs correlate with pulmonary artery pressure at high altitude. 2018;314(1):L157– L164. https://doi.org/10.1152/ajplung.00146.2017
  • 42. Jiang J, Xia Y, Liang Y, Yang M, Zeng W et al. MiR-190a-5p participates in the regulation of hypoxia-induced pulmonary hypertension by targeting KLF15 and can serve as a biomarker of diagnosis and prognosis in chronic obstructive pulmonary disease complicated with pulmonary hypertension. International Journal of COPD 2018;1(13):3777–3790. https:// doi.org/10.2147/COPD.S182504
  • 43. Li X, Xiang D, Shu Y, Hu K, Zhang Y et al. MicroRNA-204 as an indicator of severity of pulmonary hypertension in children with congenital heart disease complicated with pulmonary hypertension. Medical Science Monitor 2019;25:10173–10179. https://doi.org/10.12659/MSM.917662
  • 44. Jin P, Gu W, Lai Y, Zheng W, Zhou Q et al. The Circulating MicroRNA-206 Level Predicts the Severity of Pulmonary Hypertension in Patients with Left Heart Diseases. Cellular Physiology and Biochemistry 2017;41(6):2150–2160. https:// doi.org/10.1159/000475569
  • 45. Jin Y, Pang T, Nelin LD, Wang W, Wang Y et al. MKP-1 is a target of miR-210 and mediate the negative regulation of miR- 210 inhibitor on hypoxic hPASMC proliferation. Cell Biology International 2015;39(1):113–120. https://doi.org/10.1002/ cbin.10339
APA Duzgun Z, Kayikcioglu M, AKTAN Ç, BARA B, EROGLU F, yağmur b, Bozok Cetintas V, Bayındır M, Nalbantgil S, Tetik Vardarlı A (2023). Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. , 130 - 141. 10.55730/1300-0144.5566
Chicago Duzgun Zekeriya,Kayikcioglu Meral,AKTAN Çağdaş,BARA BUSRA,EROGLU FATMA ZUHAL,yağmur burcu,Bozok Cetintas Vildan,Bayındır Melike,Nalbantgil Sanem,Tetik Vardarlı Aslı Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. (2023): 130 - 141. 10.55730/1300-0144.5566
MLA Duzgun Zekeriya,Kayikcioglu Meral,AKTAN Çağdaş,BARA BUSRA,EROGLU FATMA ZUHAL,yağmur burcu,Bozok Cetintas Vildan,Bayındır Melike,Nalbantgil Sanem,Tetik Vardarlı Aslı Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. , 2023, ss.130 - 141. 10.55730/1300-0144.5566
AMA Duzgun Z,Kayikcioglu M,AKTAN Ç,BARA B,EROGLU F,yağmur b,Bozok Cetintas V,Bayındır M,Nalbantgil S,Tetik Vardarlı A Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. . 2023; 130 - 141. 10.55730/1300-0144.5566
Vancouver Duzgun Z,Kayikcioglu M,AKTAN Ç,BARA B,EROGLU F,yağmur b,Bozok Cetintas V,Bayındır M,Nalbantgil S,Tetik Vardarlı A Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. . 2023; 130 - 141. 10.55730/1300-0144.5566
IEEE Duzgun Z,Kayikcioglu M,AKTAN Ç,BARA B,EROGLU F,yağmur b,Bozok Cetintas V,Bayındır M,Nalbantgil S,Tetik Vardarlı A "Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension." , ss.130 - 141, 2023. 10.55730/1300-0144.5566
ISNAD Duzgun, Zekeriya vd. "Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension". (2023), 130-141. https://doi.org/10.55730/1300-0144.5566
APA Duzgun Z, Kayikcioglu M, AKTAN Ç, BARA B, EROGLU F, yağmur b, Bozok Cetintas V, Bayındır M, Nalbantgil S, Tetik Vardarlı A (2023). Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turkish Journal of Medical Sciences, 53(1), 130 - 141. 10.55730/1300-0144.5566
Chicago Duzgun Zekeriya,Kayikcioglu Meral,AKTAN Çağdaş,BARA BUSRA,EROGLU FATMA ZUHAL,yağmur burcu,Bozok Cetintas Vildan,Bayındır Melike,Nalbantgil Sanem,Tetik Vardarlı Aslı Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turkish Journal of Medical Sciences 53, no.1 (2023): 130 - 141. 10.55730/1300-0144.5566
MLA Duzgun Zekeriya,Kayikcioglu Meral,AKTAN Çağdaş,BARA BUSRA,EROGLU FATMA ZUHAL,yağmur burcu,Bozok Cetintas Vildan,Bayındır Melike,Nalbantgil Sanem,Tetik Vardarlı Aslı Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turkish Journal of Medical Sciences, vol.53, no.1, 2023, ss.130 - 141. 10.55730/1300-0144.5566
AMA Duzgun Z,Kayikcioglu M,AKTAN Ç,BARA B,EROGLU F,yağmur b,Bozok Cetintas V,Bayındır M,Nalbantgil S,Tetik Vardarlı A Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turkish Journal of Medical Sciences. 2023; 53(1): 130 - 141. 10.55730/1300-0144.5566
Vancouver Duzgun Z,Kayikcioglu M,AKTAN Ç,BARA B,EROGLU F,yağmur b,Bozok Cetintas V,Bayındır M,Nalbantgil S,Tetik Vardarlı A Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension. Turkish Journal of Medical Sciences. 2023; 53(1): 130 - 141. 10.55730/1300-0144.5566
IEEE Duzgun Z,Kayikcioglu M,AKTAN Ç,BARA B,EROGLU F,yağmur b,Bozok Cetintas V,Bayındır M,Nalbantgil S,Tetik Vardarlı A "Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension." Turkish Journal of Medical Sciences, 53, ss.130 - 141, 2023. 10.55730/1300-0144.5566
ISNAD Duzgun, Zekeriya vd. "Decreased circulating microRNA-21 and microRNA-143 are associated to pulmonary hypertension". Turkish Journal of Medical Sciences 53/1 (2023), 130-141. https://doi.org/10.55730/1300-0144.5566