Yıl: 2022 Cilt: 15 Sayı: 3 Sayfa Aralığı: 916 - 930 Metin Dili: İngilizce DOI: 10.18185/erzifbed.1093191 İndeks Tarihi: 30-03-2023

The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley)

Öz:
The ways of producing light with lighting equipment used in agricultural practice are different from each other. Therefore, each method of production generates light with different physical properties. This creates different effects on plants and living creatures. In this study, the effect of light produced by commonly used methods such as incandescence, electric discharge and electroluminescence on T. aestivum L. (wheat) and H. vulgare L. (barley) were analysed. For this purpose, different lighting environments where sources of light with LED, incandescence, sodium vapour, mercury vapour and metal halide discharge were used were created, and all variables except for the sources of light were kept the same. Wheat and barley were grown in these environments, and after the growth and harvesting processes had been completed, wet weight values, linear measurements, amounts of electrolyte leakage, chlorophyll, carotene, SOD (superoxide dismutase) and (CAT) Catalase enzyme activities were determined. Differences between the plants grown under the light parameters were determined by evaluating the data with SPSS. There were statistically significant differences between the data obtained from wheat and barley grown under different lamps.
Anahtar Kelime: Artificial light sources agriculture Triticum aestivum L. Hordeum vulgare L.

Farklı Şekillerde Üretilen Işığın Triticum aestivum L. (Buğday) ve Hordeum vulgare L. (Arpa) Üzerindeki Etkileri

Öz:
Tarımsal uygulamada kullanılan farklı aydınlatma elemanları ile farklı niteliklerde ışıklar üretmektedir. Bu durum canlılar üzerinde farklı etkiler oluşturmaktadır. Bu çalışmada, aydınlatma uygulamalarında ışık üretim yöntemlerinden en fazla kullanılan termik, deşarja dayanan ve elektrolüminesans yol ile üretilen ışığın Triticum aestivum L. (Buğday) ve Hordeum vulgare L. (Arpa) üzerindeki etkisi incelenmiştir. Bu amaçla, LED, enkandesan, sodyum buharlı, civa buharlı ve metal halojenli deşarj ışık kaynaklarının kullanıldığı farklı aydınlatma ortamları oluşturulmuş ve ışık kaynağı haricinde diğer tüm değişkenlerin aynı olması sağlanmıştır. Sonrasında bu ortamlarda buğday ve arpa bitkileri yetiştirilmiş ve 15 gün sonunda hasat edilmiştir. Hasat işlemleri tamamlandıktan sonra bitkilerin yaş ağırlıkları, boyları, elektrolit sızıntı, klorofil ile karoten miktarları, Süperoksit dismutaz (SOD) ve Katalaz (CAT) enzim aktiviteleri belirlenmiştir. Elde edilen veriler SPSS İstatistik Paket Programı’nda değerlendirilerek çalışılan ışık parametreleri altında yetiştirilen bitkiler arasındaki farklılıklar belirlenmiştir. Farklı lambalar altında yetiştirilen buğday ve arpalarda elde edilen veriler arasında istatistiksel olarak anlamlı farklılıklar olduğu gözlenmiştir.
Anahtar Kelime: Yapay ışık kaynakları tarım Triticum aestivum L. Hordeum vulgare L

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Şahin M., Oguz Y., Buyuktumturk F., (2015). Approximate and Three-Dimensional Modeling of Brightness Levels in Interior Spaces by Using Artificial Neural Networks, Journal of Electrical Engineering and Technology, 10, 1822-1829.
  • [2] Nikoudel, F., Mahdavinejad, M., Vazifehdan, J., (2018). Nocturnal architecture of buildings: interaction of exterior lighting and visual beauty, Light & Engineering, 26(1).
  • [3] Lister, G. 2018. Gas discharge lamps–a requiem.
  • [4] Karlicek, R., Sun, C. C., Zissis, G., Ma, R. (Eds.)., (2017). Handbook of advanced lighting technology, Springer.
  • [5] Craver, J. K., Boldt, J. K., Lopez, R. G., (2019). Comparison of supplemental lighting provided by high-pressure sodium lamps or light-emitting diodes for the propagation and finishing of bedding plants in a commercial greenhouse, Hortscience, 54(1), 52–59.
  • [6] Cole, L., Hoggatt, L. R., Sterrenberg, J. A., Suttmiller, D. R., Penney, W. R., Clausen, E. C., (2018). A Transient experiment to determine the heat transfer characteristics of a 100 W incandescent light bulb, operating at 48 W. Fluid Mechanics and Heat Transfer: Inexpensive Demonstrations and Laboratory Exercises, 179.
  • [7] Habich, N., Homeyer, I. K., (2018). Untersuchung zur vermeidung der blaulichtanteile beider hintergrundbeleuchtung von displays unter einsatz von LED-Clustern mit steuerbarem farbspektrum (Doctoral dissertation, Universität Hildesheim).
  • [8] Ponce-Silva, M., Aqui, J. A., Osorio, R., & Lozoya-Ponce, R. E., (2018). Starting circuit adapted to stabilize hid lamps and reducing the acoustic resonances, IEEE Transactions on Power Electronics.
  • [9] Gavrilov, S. A., Gavrish, S. V., Puchnina, S. V., (2019). Investigation of processes in glass-ceramic solders of sapphire-niobium seals in gas-discharge lamps, Glass and Ceramics, 1-5.
  • [10] Shahzad K., Čuček, L., Sagir, M., Ali, N., Rashid, M.I., Nazir, R., Nizami, A.S., Al-Turaif, H.A., Ismail, I.M.I., (2018). An ecological feasibility study for developing sustainable street lighting system, Journal of Cleaner Production, 175, 683-695.
  • [11] Pena-Garcia, A., & Sędziwy, A., (2019). Optimizing lighting of rural roads and protected areas with white light: a compromise among light pollution, energy savings, and visibility, Leukos, 1-10.
  • [12] Kwok, K.F., Cheng, K.W.E., Ping, D., (2006). General study for design the HID ballasts, 2nd International Conference on Power Electronics Systems and Applications, 182-184.
  • [13] Cox, G., (2019). Fundamentals of fluorescence imaging, Pan Stanford.
  • [14] Dupuis, R. D., Krames, M. R., (2008). History, development, and applications of high- brightness visible light-emitting diodes. Journal of Lightwave Technology, 26(9), 1154- 1171.
  • [15] Vialet-Chabrand, S., Matthews, J.S.A., Simkin, A.J., Raines, C.A., Lawson, T., (2017). Importance of fluctuations in light on plant photosynthetic acclimation, Plant Physiology, 173(4), 2163-2179.
  • [16] Ohasi-Kaneko K., Takase M., Kon N., Fujiwara K., Kurata K., (2007). Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna, Environmental Control in Biology, 45, 189-198.
  • [17] McCree, K.J., (1973). A Rational approach to light measurements in plant ecology. Current Advances in Plant Science, 3(4), 39-43.
  • [18] Zhu, XG., Long, S.P., Ort, D.R., (2008). What is the maximum efficiency with which photosynthesis can convert solar energy into biomas?, Current Opinion in Biotechnology, 19(2), 153-159.
  • [19] Galvao, V. C., Fankhauser, C., (2015). Sensing the light environment in plants: photoreceptors and early signaling steps, Current Opinion in Neurobiology, 34, 46-53.
  • [20] Van Iersel, M.W. Weaver, G. Martin, M.T. Ferrarezi, R.S. Mattos, E. Haidekker, M., (2016). A chlorophyll fluorescence-based biofeedback system to control photosynthetic lighting in controlled environment agriculture, Journal of the American Society for Horticultural Science, 141, 169–176.
  • [21] Taiz, L., Zeiger, E., (2008). Plant Physiology, Palme Yayıncılık, Ankara.
  • [22] Çetin, M., (2016). Changes in the amount of chlorophyll in some plants of landscape studies, Kastamonu Univ. Journal of Forestry Faculty, 16(1), 239-245.
  • [23] Tanaka, Y., Sasaki, N. and Ohmiya, A. (2008) Biosynthesis of Plant Pigments: Anthocyanins, Betalains and Carotenoids, Plant Journal, 54, 733-749.
  • [24] Demirtaş, M.N., Kırnak H., (2009). Effects of different irrigation systems and intervals on physiological parameters in apricot, Yuzuncu Yıl University Journal of Agricultural Sciences, 19(2), 79-83.
  • [25] Keddy, P. A., (2017). Plant ecology, Cambridge University Press.
  • [26] Griffith M., Ala P., Yang DS., Hon WC., Moffatt BA., (1992). Antifreeze protein produced endogenously in winter rye leaves, Plant Physiology, 100(2), 593-596.
  • [27] Porra, R.J., Thompson W.A., Kriedemann P.E., (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and bextracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochimica et Biophysica Acta (BBA)- Bioenergetics, 975(3), 384-394.
  • [28] Osma, E., İlhan, V., Yalçın, İ.E., (2014). Heavy metals accumulation causes toxicological effects in aquatic Typha domingensis Pers, Brazilian Journal of Botany, 37, 461–467
  • [29] Angelini, R., Federico, R., (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. Journal of Plant Physiology, 135, 212-217.
  • [30] Osma, E., Cigir, Y., Karnjanapiboonwong, A., Anderson, TA., (2018). Evaluation of selected pharmaceuticals on plant stress markers in wheat, International Journal of Environmental Research, 12, 179–188.
  • [29] Angelini, R., Federico, R., (1989). Histochemical evidence of polyamine oxidation and generation of hydrogen peroxide in the cell wall. Journal of Plant Physiology, 135, 212- 217.
  • [30] Osma, E., Cigir, Y., Karnjanapiboonwong, A., Anderson, TA., (2018). Evaluation of selected pharmaceuticals on plant stress markers in wheat, International Journal of Environmental Research, 12, 179–188.
  • [31] Havir, E. A., & McHale, N. A., (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves, Plant Physiology, 84(2), 450-455.
  • [32] Osma, E., Cigir, Y., Karnjanapiboonwong, A., Anderson, TA. 2018. Evaluation of selected pharmaceuticals on plant stress markers in wheat, International Journal of Environmental Research, 12, 179–188.
  • [33] Agarwal, S., Pandey, V., (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48(4), 555-560.
  • [34] Aydınşakir, K., Özkan, H., Karagüzel, Ö., Kaya, A., (2005). The effects of different artificial light sources on yield and quality characteristics of goldenrod (Solidago x hybrida ‘tara’), Akdeniz University Journal of the Faculty of Agriculture, 18(3), 377-384.
  • [35] Demirsoy, M., Balkaya, A., Uzun, S., (2016). The Effect of different light sources and artificial colour treatments on eggplant (Solanum melongena L.) seedling growth parameters, Selcuk. Journal of Agricultural Sciences, 3(2), 238-247.
  • [36] Uzun, S., (1996). The quantitative effects of temperature and light environment on the growth, development and yield of tomato and aubergine. PhD Thesis, The University of Reading (Unpublished), England.
  • [37] Kandemir, D., (2005). The quantitative effects of temperature and light environment on the growth, development and yield of pepper (Capsicum annuum L.) grown in greenhouses. PhD Thesis, Ondokuz Mayıs University, Institute of Science and Technology, Samsun.
  • [38] Islam, M. A., Kuwar, G., Clarke, J. L., Blystad, D. R., Gislerød, H. R., Olsen, J. E., & Torre, S,. (2012). Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps, Scientia Horticulturae, 147, 136-143
  • [39] Mitchell, C. A., Dzakovich, M. P., Gomez, C., Lopez, R., Burr, J. F., Hernández, R., Bourget, C. M., (2015). Light-emitting diodes in horticulture, Horticultural Reviews, 43, 1-87.
  • [40] Sumarni, E., Soesanto, L., Purnomo, W.H., Priswanto., (2022). The effect of light distance on aeroponic potato seed production in tropical high land, Jurnal Teknik Pertanian Lampung, 11(1), 99-109.
  • [41] Yeh, N., Chung, J., (2009). High-brightness LEDs energy efficient lighting sources and their potential in indoor plant cultivation, Renewable and Sustainable Energy Reviews, 13(8), 2175-2180.
  • [42] Köksal, N., İncesu, M., Teke A., (2013). Effects of LED Lighting on Plant Development of Tomato, Research Journal of Agricultural Sciences, 6(2), 71-75.
APA sahin m, Kılıç E, Osma E (2022). The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). , 916 - 930. 10.18185/erzifbed.1093191
Chicago sahin mustafa,Kılıç Elçin,Osma Etem The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). (2022): 916 - 930. 10.18185/erzifbed.1093191
MLA sahin mustafa,Kılıç Elçin,Osma Etem The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). , 2022, ss.916 - 930. 10.18185/erzifbed.1093191
AMA sahin m,Kılıç E,Osma E The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). . 2022; 916 - 930. 10.18185/erzifbed.1093191
Vancouver sahin m,Kılıç E,Osma E The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). . 2022; 916 - 930. 10.18185/erzifbed.1093191
IEEE sahin m,Kılıç E,Osma E "The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley)." , ss.916 - 930, 2022. 10.18185/erzifbed.1093191
ISNAD sahin, mustafa vd. "The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley)". (2022), 916-930. https://doi.org/10.18185/erzifbed.1093191
APA sahin m, Kılıç E, Osma E (2022). The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(3), 916 - 930. 10.18185/erzifbed.1093191
Chicago sahin mustafa,Kılıç Elçin,Osma Etem The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15, no.3 (2022): 916 - 930. 10.18185/erzifbed.1093191
MLA sahin mustafa,Kılıç Elçin,Osma Etem The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.15, no.3, 2022, ss.916 - 930. 10.18185/erzifbed.1093191
AMA sahin m,Kılıç E,Osma E The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 15(3): 916 - 930. 10.18185/erzifbed.1093191
Vancouver sahin m,Kılıç E,Osma E The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley). Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2022; 15(3): 916 - 930. 10.18185/erzifbed.1093191
IEEE sahin m,Kılıç E,Osma E "The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley)." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15, ss.916 - 930, 2022. 10.18185/erzifbed.1093191
ISNAD sahin, mustafa vd. "The Effects of Light Produced in Different Ways on Triticum aestivum L. (Wheat) and Hordeum vulgare L. (Barley)". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15/3 (2022), 916-930. https://doi.org/10.18185/erzifbed.1093191