Yıl: 2023 Cilt: 10 Sayı: 1 Sayfa Aralığı: 20 - 29 Metin Dili: İngilizce DOI: 10.54287/gujsa.1213307 İndeks Tarihi: 03-04-2023

Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative

Öz:
The title compound (2,2'-(piperazine-1,4-diyl)bis(N'-((E)-5-chloro-2-hydroxybenzylidene) acetohydrazide) (5-ClPAH) was synthesized by reacting 1,4-Piperazinediacetic acid, 1,4-dihydrazide and 5 -Chloro-2-hydroxybenzaldehyde. Mass spectrometry, 1H, 13C-NMR, IR results of the synthesized compound were examined. Many information about physical and chemical properties of 5-ClPAH can be obtained by theoretical calculations. Density functional theory (DFT) is widely used theoretical method for predicting of chemical structures. The structure was optimized using DFT/6311G method with GAUSSIAN09. Frontier Molecular Orbitls (HOMO and LUMO) energies were calculated. Global reactivity descriptors and also electrophilic and nucleophilic regions were defined by molecular electrostatic potential surface. Antibacterial and fungal activity were evaluated.
Anahtar Kelime: Piperazine Derivates DFT Calculation HOMO-LUMO Energies Antibacterial Activity MEP

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ayers, P. W., & Parr, R. G. (2008). Local hardness equalization: Exploiting the ambiguity. The Journal of Chemical Physics, 128(18), 184108. doi:10.1063/1.2918731
  • Benabid, W., Ouari, K., Bendia, S., Bourzami, R., & Ali, M. A. (2020). Crystal structure, spectroscopic studies, DFT calculations, cyclic voltammetry and biological activity of a copper (II) Schiff base complex. Journal of Molecular Structure, 1203, 127313. doi:10.1016/j.molstruc.2019.127313
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView 6.0. 16. Semichem Inc.:Shawnee Mission, KS, USA.
  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. P. (1985). Development and Use of Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose Quantum Mechanical Model. J. Am. Chem. Soc., 107(13), 3902-3909. doi:10.1021/ja00299a024
  • Ermiş, E., & Durmuş, K. (2020). Novel thiophene-benzothiazole derivative azomethine and amine compounds: Microwave assisted synthesis, spectroscopic characterization, solvent effects on UV–Vis absorption and DFT studies. Journal of Molecular Structure, 1217, 128354. doi:10.1016/j.molstruc.2020.128354
  • Fleming, I. (2010). Molecular Orbitals and Organic Chemical Reactions, Reference Edition. John Wiley & Sons. doi:10.1002/9780470689493
  • Foresman, J. B., & Frisch, A. (1996). Exploring Chemistry with Electronic Structure Methods. 2nd Edition. Gaussian Inc., Pittsburgh.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., & Petersson, G. A. (2009). Gaussian 09, revision a. 02, gaussian. Inc., Wallingford.
  • Gupta, A., & Goklani, P. (2017). Synthesis and Characterization of Various Alkyl, Aryl and Hetero Aryl Substituted Hydrazines and Study of their Biological Activity. Oriental Journal of Chemistry, 33(2), 1041-1044. doi:10.13005/ojc/330262
  • Hooshmand, S. A., Ghobadi, M. Z., Hooshmand, S. E., Jamalkandi, S. A., Alavi, S. M., & Masoudi-Nejad, A. (2021). A multimodal deep learning-based drug repurposing approach for treatment of COVID-19. Mol. Divers., 25(3), 1717-1730. doi:10.1007/s11030-020-10144-9
  • Jalageri, M. D., Puttaiahgowda, Y. M., Parambil, A. M., & Kulal, A. (2019). Design of multifunctionalized piperazine polymer and its activity toward pathogenic microorganisms. Journal of Applied Polymer Science, 136(19), 47521. doi:10.1002/app.47521
  • Koneman, E. W., Allen, S. D., Janda, W. M., Schreckenberger, P. C., & Winn Jr., W. C. (1997). Color Atlas and Textbook of Diagnostic Microbiology. 5th Edition. JB Lippincot Company.
  • Koparde, S., Hosamani, K. M., Kulkarni, V., Joshi, D. S. (2018). Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chemical Data Collections, 15-16, 197-206. doi:10.1016/j.cdc.2018.06.001
  • Luis Esaú, L.-J., Christian Rodolfo, R.-G., Melissa, H.-D., Claudia Adriana, C.-C., Rodolfo, G.-C., & Rafael, F.-C. (2019). An alternative disk diffusion test in broth and macrodilution method for colistin susceptibility in Enterobacteriales. Journal of Microbiological Methods, 167, 105765. doi:10.1016/j.mimet.2019.105765
  • Oueslati, Y., Kansız, S., Valkonen, A., Sahbani, T., Dege, N., & Smirani W. (2019). Synthesis, crystal structure, DFT calculations, Hirshfeld surface, vibrational and optical properties of a novel hybrid non-centrosymmetric material (C10H15N2)2H2P2O7. Journal of Molecular Structure, 1196, 499-507. doi:10.1016/j.molstruc.2019.06.110
  • Prasad, H. S. N., Ananda, A. P., Lohith, T. N., Prabhuprasad, P., Jayanth, H. S., Krishnamurthy, N. B., Sridhar, M. A., Mallesha, L., & Mallu, P. (2022). Design, synthesis, molecular docking and DFT computational insight on the structure of Piperazine sulfynol derivatives as a new antibacterial contender against superbugs MRSA. Journal of Molecular Structure, 1247, 131333. doi:10.1016/j.molstruc.2021.131333
  • Rahman, A.-u., Choudhary, M. I., & Thomsen, W. J. (2001). Bioassay Techniques for Drug Development. Harwood Academic Publishers, The Netherlands.
  • Shaquiquzzaman, M., Verma, G., Marella, A., Akhter, M., Akhtar, W., Khan, M. F., Tasneem, S., & Alam, M. M. (2015). Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. European Journal of Medicinal Chemistry, 102, 487-529. doi:10.1016/j.ejmech.2015.07.026
  • Sultan, M. A., Karama, U., Almansour, A. I., & Soliman, S. M. (2016). Theoretical study on regioselectivity of the Diels-Alder reaction between 1,8-dichloroanthracene and acrolein. Molecules, 21(10), 1277. doi:10.3390/molecules21101277
  • Suryavanshi, H. R., & Rathore, M. M. (2017). Synthesis and biological activities of piperazine derivatives as antimicrobial and antifungal agents. Org. Commun., 10(3), 228-238. doi:10.25135/acg.oc.23.17.05.026
  • Ullh, Z., Al-Otaibi, J. S., Mary, Y. S., & Kwon, H. W. (2022). Computational study of furosemide-piperazine (FS – PZ) and 2,3,5,6-tetramethylpyrazine (FS-TP) co-crystals. Journal of Molecular Liquids, 360, 119537. doi:10.1016/j.molliq.2022.119537
  • Venkataramana, H. S. C., Singh, A., Tiwari, A., & Tiwari, V. (2010). Synthesis of Phenyl Hydrazine Substituted Benzimidazole Derivatives and Their Biological Activity. International Journal of Pharmaceutical Sciences and Research, 1(1), 34-38. doi:10.13040/IJPSR.0975-8232.1(1).34-38
  • Xu, Y., Liang, P., Rashid, H. ur, Wu, L., Xie, P., Wang, H., Zhang, S., Wang, L., & Jiang, J. (2019). Design, synthesis, and biological evaluation of matrine derivatives possessing piperazine moiety as antitumor agents. Medicinal Chemistry Research, 28(10), 1618-1627. doi:10.1007/s00044-019-02398-2
  • Yan, T., Yu, S., Liu, P., Liu, Z., Wang, B., Xiong, L., & Li, Z-m. (2012). Design, Synthesis and Biological Activities of Novel Benzoyl Hydrazines Containing Pyrazole. Chinese Journal of Chemistry, 30(4), 919-923. doi:10.1002/cjoc.201100347
APA muhammet s (2023). Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. , 20 - 29. 10.54287/gujsa.1213307
Chicago muhammet sinan mithat Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. (2023): 20 - 29. 10.54287/gujsa.1213307
MLA muhammet sinan mithat Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. , 2023, ss.20 - 29. 10.54287/gujsa.1213307
AMA muhammet s Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. . 2023; 20 - 29. 10.54287/gujsa.1213307
Vancouver muhammet s Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. . 2023; 20 - 29. 10.54287/gujsa.1213307
IEEE muhammet s "Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative." , ss.20 - 29, 2023. 10.54287/gujsa.1213307
ISNAD muhammet, sinan mithat. "Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative". (2023), 20-29. https://doi.org/10.54287/gujsa.1213307
APA muhammet s (2023). Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. Gazi University Journal of Science Part A: Engineering and Innovation, 10(1), 20 - 29. 10.54287/gujsa.1213307
Chicago muhammet sinan mithat Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. Gazi University Journal of Science Part A: Engineering and Innovation 10, no.1 (2023): 20 - 29. 10.54287/gujsa.1213307
MLA muhammet sinan mithat Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. Gazi University Journal of Science Part A: Engineering and Innovation, vol.10, no.1, 2023, ss.20 - 29. 10.54287/gujsa.1213307
AMA muhammet s Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. Gazi University Journal of Science Part A: Engineering and Innovation. 2023; 10(1): 20 - 29. 10.54287/gujsa.1213307
Vancouver muhammet s Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative. Gazi University Journal of Science Part A: Engineering and Innovation. 2023; 10(1): 20 - 29. 10.54287/gujsa.1213307
IEEE muhammet s "Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative." Gazi University Journal of Science Part A: Engineering and Innovation, 10, ss.20 - 29, 2023. 10.54287/gujsa.1213307
ISNAD muhammet, sinan mithat. "Design, DFT Calculations and Antimicrobial Activity of New Synthesized Piperazine Derivative". Gazi University Journal of Science Part A: Engineering and Innovation 10/1 (2023), 20-29. https://doi.org/10.54287/gujsa.1213307