Yıl: 2023 Cilt: 30 Sayı: 129 Sayfa Aralığı: 71 - 84 Metin Dili: Türkçe DOI: 10.7216/teksmuh.1272310 İndeks Tarihi: 04-04-2023

CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ

Öz:
Son yıllarda, cerrahi alandaki gelişmeler implante edilebilir biyomedikal malzemelerin gelişimini desteklemiştir. Biyomalzemeler, hasara uğramış doku/organın işlevini yeniden sağlamak, böylece hastanın yaşam kalitesini artırmak amacıyla kullanılmaktadır. İmplante edilebilir biyomalzemelerin gelişme gösterdiği alanlardan biri de, fıtık oluşumunun neden olduğu karın duvarı kusurlarının onarımıdır. Fıtık onarımı, dünya çapında en yaygın cerrahi prosedürler arasındadır ve zorlu bir klinik sorun olmaya devam etmektedir. Her yıl yaklaşık yirmi milyon hasta, fıtık gelişimine bağlı olarak ameliyat olmaktadır. Karın duvarında oluşan hasarın, mesh adı verilen bir tıbbi tekstil materyalinin implante edilmesi ile onarılması, en yaygın cerrahi yaklaşımlardan biridir. Fıtık cerrahisinde mesh implantasyonu sonrasında enfeksiyon, seroma oluşumu ve adezyon gibi istenmeyen yan etkiler oluşabilmektedir. Bununla birlikte, ülkemizde mesh üretimi yapılmamakta ve kullanılan meshler yurtdışından yüksek bedeller ile ithal edilmektedir. Bu çalışmada; karın duvarında oluşan ve fıtığa sebep olan büyük hasarların tedavisinde, mesh materyallerinin kullanımının önemi ortaya konulmuş ve mesh tasarımında etkili parametreler tartışılarak yeni nesil meshlere yönelik araştırmalara yer verilmiştir.
Anahtar Kelime: Biyomalzeme fıtık mesh

A BIOMATERIAL USED IN THE SURGICAL AREA: HERNIA MESH

Öz:
The developments in surgical area have supported the evolution of implantable biomedical materials. The biomaterials have been widely used to regain the functionality of defected tissue/organ, so that they increase the life quality of the patients. One of the areas in which implantable biomaterials are developing is the repair of abdominal wall defects caused by hernia. Hernia repair is a widespread surgical technique and it’s accepted as a very challenging clinical problem all over the world. Approximately twenty million patients need repairment of defected abdominal wall related with hernia, annually. The repairment of abdominal wall defects by meshes, which are medical textile products, is one of the most common surgical applications. Infectious, seroma and adhesions are the common side effects observed after mesh implantation in hernia repair. However, surgical mesh could not be produced in Turkey and has been imported with higher costs. The importance of the use of mesh materials in the treatment of major injuries that occur in the abdominal wall, and cause hernia was put forward, and the effective parameters in mesh design are discussed and research on new generation meshes is included.
Anahtar Kelime: Biomaterial hernia mesh

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. GlobeNewswire. Global Medical Device Market 2020 Size to Increase Due to Rising Infectious and Chronic Disease Cases as per the Business Research Company’s Medical Devices Global Market Opportunities and Strategies - Global Forecast to 2030, https://www.globenewswire.com/news-release/2020/10/ 27/2114984/0/ en/Global-Medical-Device-Market-2020-Size-To-Increase-Due-To-Rising-Infectious-And-Chronic-Disease -Cases-As-Per-The-Business-Research-Company-s-Medical-Devices-Global-Market-Opportuni.html, Erişim Tarihi: 5 Temmuz 2021.
  • 2. Kalaba, S., Gerhard, E., Winder, J. S., Pauli, E. M., Haluck, R. S., and Yang, J., (2016), Design Strategies and Applications of Biomaterials and Devices for Hernia Repair, Bioactive Materials, 1(1), 2–17.
  • 3. MarketWatch. Global Hernia Repair Mesh Market Trends 2022 Industry Recent Developments and Latest Technology, Size-Share, Future Growth, Supply-Demand Scenario, Forecast Research Report 2028, https://www.marketwatch.com/press-release/global-hernia-repair-mesh-market-trends-2022-industry-recent -developments-and-latest-technology-size-share-future-growth-supply-demand-scenario-forecast-research-report-2028-2022-02-22, Erişim Tarihi: 27 Şubat 2022.
  • 4. Ertuğrul, E. Ankara Tıbbi Cihazlar Sektör Analizi, https://www. ankaraka.org.tr/archive/files/yayinlar/ ankara-tibbi-cihaz-analiz.pdf, Erişim Tarihi: 13 Eylül 2021.
  • 5. Kılıçarslan, M., and Binnaz, T., (2019), Dünya’da ve Türkiye’de Tıbbi Cihaz Sektöründe Pazarlamanın Önemi, Avrupa Bilim ve Teknoloji Dergisi, 17, 966–971.
  • 6. Bartels, V. T, (2011), Handbook of Medical Textiles, Woodhead Publishing, Oxford.
  • 7. Brown, C., and Finch, J., (2010), Which Mesh for Hernia Repair?, The Annals of The Royal College of Surgeons of England, 92(4), 272–278.
  • 8. Franz, M. G., (2006), The Biology of Hernias and the Abdominal Wall, Hernia, 10(6), 462–471.
  • 9. Hatipoğlu, S., (2008), İnguinal Fıtık Tamirinde Kullanılan Lichtenstein ve Anterior Preperitoneal Mesh Takviyesi Yöntemlerinin Testiküler Volüm ve Kan Akımı Üzerine Olan Etkilerinin Karşılaştırılması, Uzmanlık Tezi, Bakırköy Dr. Sadi Konuk Eğitim ve Araştırma Hastanesi, İstanbul.
  • 10. Birindelli, A., Sartelli, M., Di Saverio, S., Coccolini, F., Ansaloni, L., van Ramshorst, G. H., Campanelli, G., Khokha, V., Moore, E. E., Peitzman, A., Velmahos, G., Moore, F. A., Leppaniemi, A., Burlew, C. C., Biffl, W. L., Koike, K., Kluger, Y., Fraga, G. P., Ordonez, C. A., Novello, M., Agresta, F., Sakushev, B., Gerych, I., Wani, I., Kelly, M. D., Gomes, C. A., Faro Jr, M. P., Tarasconi, A., Demetrashvili, Z., Lee, J. G., Vettoretto, N., Guercioni, G., Persiani, R., Trana, C., Cui, Y., Kok, K. Y. Y., Ghnnam, W. M., Abbas, A. E., Sato, N., Marwah, S., Rangarajan, M., Ben-Ishay, O., Adesunkanmi, A. R., K., Lohse, H. A. S., Kenig, J., Mandala, S., Coimbra, R., Bhangu, A., Suggett, N., Biondi, A., Portolani, N., Baicchi, G., Kirkpatrick, A. W., Scibe, R., Sugrue, M. Chiara, O., and Catena, F., (2017), 2017 Update of the WSES Guidelines for Emergency Repair of Complicated Abdominal Wall Hernias, World Journal of Emergency Surgery, 12(1). 37–52.
  • 11. Houshyar, S., Sarker, A., Jadhav, A., Kumar, G. S., Bhattacharyya, A., Nayak, R., Shanks, R. A., Saha, T., Rifai, A., Padhye, R., and Fox, K., (2020), Polypropylene-Nanodiamond Composite for Hernia Mesh, Materials Science and Engineering: C, 111, 110780.
  • 12. Costa, A., Adamo, S., Gossetti, F., D’Amore, L., Ceci, F., Negro, P., and Bruzzone, P., (2019), Biological Scaffolds for Abdominal Wall Repair: Future in Clinical Application?, Materials, 12(15), 2375.
  • 13. Surgeons 101. What are the Types of Abdomınal Wall Hernıas?, https://surgeons101.com/ hernia-linic.php, Erişim Tarihi: 13 Temmuz 2022.
  • 14. Park, A. E., Roth, J. S., and Kavic, S. M., (2006), In Brief, Current Problems in Surgery, 43(5), 322–324. 15. Sheen, A. J., (2005), Prosthetics in Hernia Repair, Surgery Today, 35(3), 196–198.
  • 16. Bringman, S., Conze, J., Cuccurullo, D., Deprest, J., Junge, K., Klosterhalfen, B. Parra Davila, E., Ramshaw, B., and Schumpelick, V., (2010), Hernia Repair: The Search for Ideal Meshes, Hernia, 14(1), 81–87.
  • 17. Itani, K. M. F., and Fitzgibbons, R., (2019), Approach to Groin Hernias, JAMA Surgery, 154(6), 551–552.
  • 18. Serrano Aroca, A., and Pous Serrano, S., (2021), Prosthetic Meshes for Hernia Repair: State of Art, Classification, Biomaterials, Antimicrobial Approaches, and Fbrication Methods, Journal of Biomedical Materials Research Part A, 9(12), 2695–2719.
  • 19. Corduas, F., Lamprou, D. A., and Mancuso, E., (2021), Next-Generation Surgical Meshes for Drug Delivery and Tissue Engineering Applications: Materials, Design and Emerging Manufacturing Technologies, Bio-Design and Manufacturing, 4(2), 278–310.
  • 20. Earle, D. B., and Mark, L. A., (2008), Prosthetic Material in Inguinal Hernia Repair: How Do I Choose?, Surgical Clinics of North America, 88(1), 179–201.
  • 21. Sanbhal, N., Miao, L., Xu, R., Khatri, A., and Wang, L., (2017), Physical Structure and Mechanical Properties of Knitted Hernia Mesh Materials: A Review, Journal of Industrial Textiles, 48(1), 333–360.
  • 22. Vorst, A. L., (2015), Evolution and Advances in Laparoscopic Ventral and Incisional Hernia Repair, World Journal of Gastrointestinal Surgery, 7(11), 293–305.
  • 23. Medical Dialogues. Biological Mesh Tied to Higher Complications Than Synthetic Mesh in Hernia Repair, https://medicaldialogues. in/surgery/news/biological-mesh-tied-to-higher-complications-than synthetic-mesh -in-hernia-repair-73609, Erişim Tarihi: 15 Mayıs 2022.
  • 24. Echebiri, P. Discuss Use of Mesh in Surgery, https://www.slideshare.net/MarckMag/discuss-use-of-mesh-in-surgery?from_action=save, Erişim Tarihi: 25 Ekim 2021.
  • 25. Stoppa, R. E., Rives, J. L., Warlaumont, C. R., Palot, J. P., Verhaeghe, P. J., and Delattre, J. F., (1984), The Use of Dacron in the Repair of Hernias of the Groin, Surgical Clinics of North America, 64(2), 269–285.
  • 26. Chen, D. C., and Morrison, J., (2019), State of the Art: Open Mesh-based Inguinal Hernia Repair, Hernia, 23(3), 485–492.
  • 27. See, C. W, Kim, T., and Zhu, D., (2020), Hernia Mesh and Hernia Repair: A Review, Engineered Regeneration, 1, 19–33.
  • 28. Scott, N., Go, P. M. N. Y., Graham, P., McCormack, K., Ross, S. J., and Grant, A. M., (2001), Open Mesh Versus Non-Mesh for Groin Hernia Repair, Cochrane Database of Systematic Reviews, 4, CD002197.
  • 29. Miao, L., Wang, F., Wang, L., Zou, T., Brochu, G., and Guidoin, R., (2015), Physical Characteristics of Medical Textile Prostheses Designed for Hernia Repair: A Comprehensive Analysis of Select Commercial Devices, Materials, 8(12), 8148–8168.
  • 30. Kokotovic, D., Bisgaard, T., and Helgstrand, F., (2016), Long-term Recurrence and Complications Associated With Elective Incisional Hernia Repair. JAMA, 316(15), 1575–1582.
  • 31. Rastegarpour, A., Cheung, M.,, Vardhan M., Ibrahim, M. M., Butler, C. E., and Levinson, H., (2016), Surgical Mesh for Ventral İncisional Hernia Repairs: Understanding Mesh Design, Plastic Surgery (Oakville, Ont.), 24(1), 41–50.
  • 32. Kulacoglu, H., (2011), Current Options in Inguinal Hernia Repair in Adult Patients, Hippokratia, 15(3), 223–231.
  • 33. Guillaume, O., Teuschl, A. H., Gruber-Blum, S., Fortelny, R. H., Redl, H., and Petter-Puchner, A., (2015), Emerging Trends in Abdominal Wall Reinforcement: Bringing Bio-Functionality to Meshes, Advanced Healthcare Materials, 4(12), 1763–1789.
  • 34. Cobb, W. S., Peindl, R. M., Zerey, M., Carbonell, A. M., and Heniford, B. T., (2008), Mesh Terminology 101, Hernia, 13(1), 1–6.
  • 35. Bellows, C. F., Alder, A., and Helton, W. S., (2006), Abdominal Wall Reconstruction Using Biological Tissue Grafts: Present Status and Future Opportunities, Expert Review of Medical Devices, 3(5), 657–675.
  • 36. El-Hayek, K. M., and Chand, B., (2010), Biologic Prosthetic Materials for Hernia Repairs, Journal of Long-Term Effects of Medical Implants, 20(2), 159–69.
  • 37. Messa, C. A., Kozak, G., Broach, R. B., and Fischer, J. P., (2019), When the Mesh Goes Away, Plastic and Reconstructive Surgery - Global Open, 7(11), e2576.
  • 38. Smart, N. J., Marshall, M., and Daniels, I. R., (2012), Biological Meshes: A Review of Their Use in Abdominal Wall Hernia Repairs, The Surgeon, 10(3), 159–171.
  • 39. Burns, N. K., Jaffari, M. V., Rios, C. N., Mathur, A. B., and Butler, C. E., (2010), Non–Cross-Linked Porcine Acellular Dermal Matrices for Abdominal Wall Reconstruction, Plastic and Reconstructive Surgery, 125(1), 167–176.
  • 40. Giuntoli, G., Muzio, G., Actis, C., Ganora, A., Calzone, S., Bruno, M., Ciardelli, G., Carmagnola, I., and Tonda-Turo, C., (2021), In-vitro Characterization of a Hernia Mesh Featuring a Nanostructured Coating, Frontiers in Bioengineering and Biotechnology, 8, 589223.
  • 41. Klosterhalfen, B., Klinge, U., Schumpelick, V., Tietze, L., (2000), Polymers in Hernia Repair–Common Polyester vs. Polypropylene Surgical Meshes, Journal of Materials Science, 35, 4769–4776.
  • 42. Aydın, S., Onuktav, O., Kader, M. O., Yozgatlı, E. P., Boyacı, B., (2021), Physical Investigation of Polyester Hernia Mesh with Different Construction, 8. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu (ULPAS) Bildiri Kitapçığı. 92–95, 18-19 Haziran 2021, Eskişehir.
  • 43. Poussier, M., Deneve, E., Blanc, P., Boulay, E., Bertrand, M., Nedelcu, M., Herrero, A., Fabre, J. M., and Nocca, D., (2013), A Review of Available Prosthetic Material for Abdominal Wall Repair, Journal of Visceral Surgery, 150(1), 52–59.
  • 44. Todros, S., Pavan, P. G., and Natali, A. N., (2015), Synthetic Surgical Meshes Used in Abdominal Wall Surgery: Part I-Materials and Structural Conformation, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(3), 689–699.
  • 45. Bilsel, Y., and Abci, I., (2012), The Search for Ideal Hernia Repair; Mesh Materials and Types, International Journal of Surgery, 10(6), 317–321.
  • 46. Cevasco, M., and Itani, K. M. F., (2012), Ventral Hernia Repair with Synthetic, Composite, and Biologic Mesh: Characteristics, Indications, and Infection Profile, Surgical Infections, 13(4), 209–215.
  • 47. Baylon, K., Rodríguez-Camarillo, P., Elías-Zuniga, A., Díaz-Elizondo, J., Gilkerson, R., and Lozano, K., (2017), Past, Present and Future of Surgical Meshes: A Review, Membranes, 7(3), 47.
  • 48. Aydemir Sezer, U., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., Vardar Aker, F., Yanıkkaya Demirel, G., and Sezer, S., (2019), Polypropylene Composite Hernia Mesh with Anti-adhesion Layer Composed of Polycaprolactone and Oxidized Regenerated Cellulose, Materials Science and Engineering: C, 99, 1141–1152.
  • 49. East, B., Plencner, M., Kralovic, M., Rampichova, M., Sovkova, V., Vocetkova, K., Otahal, M., Tonar, Z., Kolinko, Y., Amler, E., and Hoch, J., (2018), A Polypropylene Mesh Modified with Poly-ε-caprolactone Nanofibers in Hernia Repair: Large Animal Experiment, International Journal of Nanomedicine, 13, 3129–3143.
  • 50. Awad, S. S., and Fagan, S. P., (2004), Current Approaches to İnguinal Hernia Repair, The American Journal of Surgery, 188(6), 9–16.
  • 51. Junge, K., Binnebösel, M., von Trotha, K. T., Rosch, R., Klinge, U., Neumann, U. P., and Jansen, P. L., (2011), Mesh Biocompatibility: Effects of Cellular Inflammation and Tissue Remodelling, Langenbeck’s Archives of Surgery, 397(2), 255–270.
  • 52. Xu, D., Fang, M., Wang, Q., Qiao, Y., Li, Y., and Wang, L., (2022), Latest Trends on the Attenuation of Systemic Foreign Body Response and Infectious Complications of Synthetic Hernia Meshes, ACS Applied Bio Materials, 5 (1), 1–19,
  • 53. Şafak, Ş., (2016), Biyobozunur Polimerlerden Elektro Çekim Yöntemiyle Üretilen Nanolifli Yüzeylerin Cerrahi Adezyon Bariyeri Olarak Kullanımlarının Araştırılması, Doktora Tezi, Uludağ Üniversitesi, Bursa.
  • 54. Lanzalaco, S., Del Valle, L. J., Turon, P., Weis, C., Estrany, F., Aleman, C., and Armelin, E., (2020), Polypropylene Mesh for Hernia Repair with Controllable Cell Adhesion/de-adhesion Properties, Journal of Materials Chemistry B, 8(5), 1049–1059.
  • 55. Goldenberg, A., Matone, J., Marcondes, W., Herbella, F. A. M., and Farah, J. F. de M., (2005), Comparative Study of Inflammatory Response and Adhesions Formation After Fixation of Different Meshes for İnguinal Hernia Repair in Rabbits, Acta Cirurgica Brasileira, 20(5), 347–352.
  • 56. Falagas, M. E., and Kasiakou, S. K., (2005), Mesh-Related Infections After Hernia Repair Surgery, Clinical Microbiology and Infection, 11(1), 3–8.
  • 57. Shankaran, V., Weber, D. J., Reed, R. L., and Luchette, F. A., (2011), A Review of Available Prosthetics for Ventral Hernia Repair, Annals of Surgery, 253(1), 16–26.
  • 58. Krause, H. G., Galloway, S. J., Khoo, S. K., Lourıe, R., and Goh, J. T. W., (2006), Biocompatible Properties of Surgical Mesh Using an Animal Model, The Australian and New Zealand Journal of Obstetrics and Gynaecology, 46(1), 42–45.
  • 59. Alam, N. N., Narang, S. K., Pathak, S., Daniels, I. R., and Smart, N. J., (2016), Methods of Abdominal Wall Expansion for Repair of Incisional Herniae: A Systematic Review, Hernia. 20(2), 191–199.
  • 60. Wang, X., Han, C., Hu, X., Sun, H., You, C., Gao, C., and Haiyang, Y., (2011), Applications of Knitted Mesh Fabrication Techniques to Scaffolds for Tissue Engineering and Regenerative Medicine, Journal of the Mechanical Behavior of Biomedical Materials, 4, 922–932.
  • 61. Todros, S., Pavan, P., Pachera, P., and Natali, A., (2017), Synthetic Surgical Meshes Used in Abdominal Wall Surgery: Part II-Biomechanical Aspects, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105(4), 892–903.
  • 62. Cobb, W. S., Burns, J. M., Peindl, R. D., Carbonell, A. M., Matthews, B. D., Kercher, K. W., and Heniford, B. T., (2006), Textile Analysis of Heavy Weight, Mid-Weight, and Light Weight Polypropylene Mesh in a Porcine Ventral Hernia Model, Journal of Surgical Research, 136(1), 1–7.
  • 63. Raptis, D. A., Vichova, B., Breza, J., Skipworth, J., and Barker, S., (2011), A Comparison of Woven Versus Nonwoven Polypropylene (PP) and Expanded Versus Condensed Polytetrafluoroethylene (PTFE) on Their Intraperitoneal Incorporation and Adhesion Formation, Journal of Surgical Research, 169(1), 1–6.
  • 64. Zhu, L.-M, Schuster, P., and Klinge, U., (2015), Mesh Implants: An Overview of Crucial Mesh Parameters, World Journal of Gastrointestinal Surgery, 7(10), 226–236.
  • 65. Ghosh, S., (2014), Composite Nonwovens in Medical Applications, Composite Non-Woven Materials, 211–224.
  • 66. Mori da Cunha, M. G. M. C., Arts, B., Hympanova, L., Rynkevic, R., Mackova, K., Bosman, A. W., Dankers, P. Y. W., Deprest, J., (2020), Functional Supramolecular Bioactivated Electrospun Mesh Improves Tissue Ingrowth in Experimental Abdominal Wall Reconstruction in Rats, Acta Biomaterialia, 106, 82–91.
  • 67. Ebersole, G. C., Buettmann, E. G., MacEwan, M. R., Tang, M. E., Frisella, M. M., Matthews, B. D., and Deeken, C. R., (2012), Development of Novel Electrospun Absorbable Polycaprolactone (PCL) Scaffolds for Hernia Repair Applications, Surgical Endoscopy, 26(10), 2717–2728.
  • 68. Yu, S., and Ma, P., (2020), Mechanical Properties of Warp-Knitted Hernia Repair Mesh with Various Boundary Conditions, Journal of the Mechanical Behavior of Biomedical Materials, 114, 104192.
  • 69. Gomez-Gil, V., Pascual, G., and Bellon, J., (2019), Biomaterial Implants in Abdominal Wall Hernia Repair: A Review on the Importance of the Peritoneal Interface, Processes, 7(2), 105–122.
  • 70. Klosterhalfen, B., Junge, K., and Klinge, U., (2005), The Lightweight and Large Porous Mesh Concept for Hernia Repair, Expert Review of Medical Devices, 2(1), 103–117.
  • 71. Dahesh, M. B., Asayesh, A., and Jeddi, A. A. A., (2020), Effect of Fabric Structure on the Bursting Characteristics of Warp-Knitted Surgical Mesh, The Journal of the Textile Institute, 111(9), 1346–1353.
  • 72. Afewerki, S., Bassous, N., Harb, S. V., Corat, M. A. F., Maharjan, S., Ruiz-Esparza, G. U., de Paula, M. M. M., Webster, T. J., Tim, C. R., Viana, B. C., Wang, D., Wang, X., Marciano, F., and Lobo, A. O., (2021), Engineering Multifunctional Bactericidal Nanofibers for Abdominal Hernia Repair, Communications Biology, 4(1), 233–246.
  • 73. Doctor, H. G., (2006), Evaluation of Various Prosthetic Materials and Newer Meshes for Hernia Repairs, Journal of Minimal Access Surgery, 2 (3), 110–116.
  • 74. Dahesh, M. B., Asayesh, A., and Jeddi A. A. A., (2021), Analysis of the Role of the Structural Characteristics of Surgical Meshes on the Tensile Properties in Different Directions, Fibers and Polymers, 22(12), 3479–3489.
  • 75. Cobb, W. S., Burns, J. M., Kercher, K. W., Matthews, B. D., James Norton, H., and Todd Heniford, B., (2005), Normal Intraabdominal Pressure in Healthy Adults, Journal of Surgical Research, 129(2), 231–235.
  • 76. Plencner, M., East, B., Tonar, Z., Otahal, M., Prosecka, E., Rampichova, M., Krejci, T., Litvinec, A., Buzgo, M., Mickova, A., Necas, A., Hoch, J., and Amler, E., (2014), Abdominal Closure Reinforcement by Using Polypropylene Mesh Functionalized with Poly-Ԑ-caprolactone anofibers and Growth Factors for Prevention of Incisional Hernia Formation, International Journal of Nanomedicine, 9(1), 3263–3277.
  • 77. Liu, P., Chen, N., Jiang, J., and Wen, X., (2019), New Surgical Meshes with Patterned Nanofiber Mats, RSC Advances, 9(31), 17679–17690.
  • 78. Gradisteanu Pircalabioru, G., Tihauan, B., Axinie (Bucos), M., Angheloiu, M., Visileanu E., (2021), Development and Characterisation of Polypropylene-PLGA Electrospun Hernia Meshes, Annals of the Oradea University Fascicle of Textiles, Leatherwork, 22(2), 39–42.
  • 79. Agarwal, S., Wendorff, J. H., and Greiner, A., (2008), Use of Electrospinning Technique for Biomedical Applications, Polymer, 49(26), 5603–5621.
  • 80. Ko, J. E., Ko, Y. G., Kim, W. I., Kwon, O. K., and Kwon, O. H., (2017), Nanofiber Mats Composed of a Chitosan-Poly(D,Llactic-co-glycolic acid)-Poly(ethylene oxide) Blend as a Postoperative Anti-adhesion Agent, Journal of Biomedical Materials Research Part B, 105B, 1906–1915.
  • 81. Shokrollahi, M., Bahrami, S. H., Nazarpak, M. H., and Solouk, A., (2020), Biomimetic Double-sided Polypropylene Mesh Modified by DOPA and Ofloxacin Loaded Carboxyethyl Chitosan/Polyvinyl alcohol-Polycaprolactone Nanofibers for Potential Hernia Repair Applications, International Journal of Biological Macromolecules, 165- 902–917.
  • 82. Aydemir Sezer, U., Sanko, V., Gulmez, M., Sayman, E., Aru, B., Yuksekdag, Z. N., Aktekin, A., Vardar Aker, F., and Sezer, S., (2017), A Polypropylene-Integrated Bilayer Composite Mesh with Bactericidal and Antiadhesive Efficiency for Hernia Operations, ACS Biomaterials Science & Engineering, 3(12), 3662–3674.
  • 83. Yang, D., Song, Z., Shen, J., Song, H., Yang, J., Zhang, P., and Gu, Y., (2020), Regenerated Silk Fibroin (RSF) Electrostatic Spun Fibre Composite with Polypropylene Mesh for Reconstruction of Abdominal Wall Defects in a Rat Model, Artificial Cells, Nanomedicine and Biotechnology, 48(1), 425–434.
  • 84. Mao, Y., Meng, Y., Li, S., Li, Y., Guidoin, R., Qiao, Y., Zhang, Z., Brochu, G., Tang, J., and Wang, L., (2021), Comparative Study on Nanofiber Containing Polypropylene-based Composite Mesh for Abdominal Wall Hernia Repair, Materials & Design, 212, 110227.
  • 85. Dufay, M., Jimenez, M., Casetta, M., Chai, F., Blanchemainb, N., Stoclet, G., Cazaux, F., Bellayer, S., and Degoutin, S., (2021), PCL Covered PP Meshes Plasma-grafted by Sulfonated Monomer for the Prevention of Postoperative Abdominal Adhesions, Materials Today Communications, 26, 101968.
  • 86. Guillaume, O., Garric, X., Lavigne, J.-P., Van Den Berghe, H., and Coudane, J., (2012), Multilayer, Degradable Coating as a Carrier for the Sustained Release of Antibiotics: Preparation and Antimicrobial Efficacy in Vitro, Journal of Controlled Release, 162(3), 492–501.
  • 87. Reinbold, J., Hierlemann, T., Urich, L., Uhde, A.-K., Müller, I., Weindl, T., Vogel, U., Sclensak, C., Wendel, H-P., Krajewski, S., (2017), Biodegradable Rifampicin-releasing Coating of Surgical Meshes for the Prevention of Bacterial Infections, Drug Design, Development and Therapy, 11, 2753–2762.
  • 88. Sanbhal, N., Saitaer, X., Li, Y., Mao, Y., Zou, T., Sun, G., and Wang, L., (2018), Controlled Levofloxacin Release and Antibacterial Properties of β-Cyclodextrins-Grafted Polypropylene Mesh Devices for Hernia Repair, Polymers, 10(5), 493.
  • 89. Pérez-Köhler, B., Benito-Martínez, S., Rodríguez, M., García-Moreno, F., Pascual, G., and Bellón, J. M., (2019), Experimental Study on the Use of a Chlorhexidine-loaded Carboxymethylcellulose Gel as Antibacterial Coating for Hernia Repair Meshes. Hernia, 23(4), 789–800.
  • 90. Perez-Köhler, B., Pascual, G., Benito-Martínez, S., Bellon, J. M., Eglin, D., and Guillaume, O., (2020), Thermo-Responsive Antimicrobial Hydrogel for the In-Situ Coating of Mesh Materials for Hernia Repair, Polymers, 12(6), 1245.
  • 91. Qiao, Y., Zhang, Q., Wang, Q., Li, Y., and Wang, L., (2021), Filament-anchored Hydrogel Layer on Polypropylene Hernia Mesh with Rrobust Anti-inflammatory Effects, Acta Biomaterialia, 128, 277–290.
  • 92. Gradisteanu Pircalabioru, G., Dolete, G., Tihauan, B., Visileanu E., Axinie (Bucos), M., (2020), Development and Characterization of New Biocompatible Polyester Hernia Meshes Impregnated with Chitosan, Annals of the Oradea University Fascicle of Textiles, Leatherwork, 21(1), 133–138.
APA Aras C, Isik O, Omeroglu S, ozalp g, Osman B, Karaca E (2023). CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. , 71 - 84. 10.7216/teksmuh.1272310
Chicago Aras Cansu,Isik Ozgen,Omeroglu Sunay,ozalp gozde,Osman Bilgen,Karaca Esra CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. (2023): 71 - 84. 10.7216/teksmuh.1272310
MLA Aras Cansu,Isik Ozgen,Omeroglu Sunay,ozalp gozde,Osman Bilgen,Karaca Esra CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. , 2023, ss.71 - 84. 10.7216/teksmuh.1272310
AMA Aras C,Isik O,Omeroglu S,ozalp g,Osman B,Karaca E CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. . 2023; 71 - 84. 10.7216/teksmuh.1272310
Vancouver Aras C,Isik O,Omeroglu S,ozalp g,Osman B,Karaca E CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. . 2023; 71 - 84. 10.7216/teksmuh.1272310
IEEE Aras C,Isik O,Omeroglu S,ozalp g,Osman B,Karaca E "CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ." , ss.71 - 84, 2023. 10.7216/teksmuh.1272310
ISNAD Aras, Cansu vd. "CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ". (2023), 71-84. https://doi.org/10.7216/teksmuh.1272310
APA Aras C, Isik O, Omeroglu S, ozalp g, Osman B, Karaca E (2023). CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. Tekstil ve Mühendis, 30(129), 71 - 84. 10.7216/teksmuh.1272310
Chicago Aras Cansu,Isik Ozgen,Omeroglu Sunay,ozalp gozde,Osman Bilgen,Karaca Esra CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. Tekstil ve Mühendis 30, no.129 (2023): 71 - 84. 10.7216/teksmuh.1272310
MLA Aras Cansu,Isik Ozgen,Omeroglu Sunay,ozalp gozde,Osman Bilgen,Karaca Esra CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. Tekstil ve Mühendis, vol.30, no.129, 2023, ss.71 - 84. 10.7216/teksmuh.1272310
AMA Aras C,Isik O,Omeroglu S,ozalp g,Osman B,Karaca E CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. Tekstil ve Mühendis. 2023; 30(129): 71 - 84. 10.7216/teksmuh.1272310
Vancouver Aras C,Isik O,Omeroglu S,ozalp g,Osman B,Karaca E CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ. Tekstil ve Mühendis. 2023; 30(129): 71 - 84. 10.7216/teksmuh.1272310
IEEE Aras C,Isik O,Omeroglu S,ozalp g,Osman B,Karaca E "CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ." Tekstil ve Mühendis, 30, ss.71 - 84, 2023. 10.7216/teksmuh.1272310
ISNAD Aras, Cansu vd. "CERRAHİ ALANDA KULLANILAN BİR BİYOMALZEME: FITIK MESHİ". Tekstil ve Mühendis 30/129 (2023), 71-84. https://doi.org/10.7216/teksmuh.1272310