Yıl: 2023 Cilt: 16 Sayı: 1 Sayfa Aralığı: 224 - 238 Metin Dili: İngilizce DOI: 10.18185/erzifbed.1174027 İndeks Tarihi: 31-05-2023

Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity

Öz:
Nanoparticles can be synthesized in many different ways. However, synthesis methods that are except of biosynthesis are very expensive and environmentally hazardous processes. Nanoparticles with various morphologies and shapes are frequently used in biosynthesis studies due to the advantages of their small size. Bio-synthesized nanoparticles gain great importance for reasons such as prevention of environmental pollution and being economical. Zirconium dioxide nanoparticles(ZrO2 NPs) are prominent especially in dental coatings and photocatalytic applications. With this study, for the first time, zirconium dioxide nanoparticles biologically synthesized with Streptomyces sp. HC1 strain were produced. The bio-synthesized ZrO2 NPs were characterized different methods and instruments. Then the nanoparticles were studied their bioactivity especially antimicrobial and antibiofilm.The results confirmed the efficient antimicrobial effect of zirkonium dioxide nanoparticles as well as efficient antibiofilm effect. The synthesis of ZrO2 nanoparticles from Streptomyces sp. HC1 by biological synthesis and determination of the bioactivity of these nanoparticles were reported for the first time in this work.
Anahtar Kelime: zirconia nanoparticle biosynthesis antimicrobial antibiofilm Streptomyces sp. HC1

Zirkonyum dioksit nanopartikülllerinin Streptomyces sp. HC1 tarafından biyosentezi: Karakterizasyon ve Biyoaktivite

Öz:
Nanopartiküller birçok farklı şekilde sentezlenebilir ancak biyosentez dışındaki sentez yöntemleri çok pahalı ve çevreye zararlı işlemlerdir. Çeşitli morfoloji ve şekillere sahip nanopartiküller, küçük boyutlarının avantajlarından dolayı biyosentez çalışmalarında sıklıkla kullanılmaktadır. Biyosentezlenen nanopartiküller, çevre kirliliğinin önlenmesi ve ekonomik olması gibi nedenlerle büyük önem kazanmaktadır. Zirkonyum dioksit nanopartikülleri (ZrO2 NP'ler) özellikle diş kaplamalarında ve fotokatalitik uygulamalarda öne çıkmaktadır. Bu çalışma ile ilk kez zirkonyum dioksit nanopartikülleri biyolojik olarak Streptomyces sp. HC1 suşu kullanılarak üretildi. Biyo-sentezlenmiş ZrO2 NP'leri, farklı yöntemler ve cihazlarla karakterize edildi. Daha sonra nanopartiküllerin biyoaktiviteleri, özellikle antimikrobiyal ve antibiyofilm üzerinde çalışıldı. Sonuçlar, zirkonyum dioksit nanopartiküllerin etkili antimikrobiyal etkisini ve ayrıca etkili antibiyofilm etkisini doğruladı. Streptomyces sp. HC1'den ZrO2 nanoparçacıklarının biyolojik sentezi ve bu nanopartiküllerin biyoaktivitesinin belirlenmesi ilk kez bu çalışmada rapor edilmiştir.
Anahtar Kelime: zirkonyum nanopartikül biyosentez antimikrobiyal antibiyofilm Streptomyces sp. HC1

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Mandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, G., Mukherjee, P. (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol., 69, 485–492.
  • [2] Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P.K. (2021) Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications. J Clust Sci., 33, 603–617.
  • [3] Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P.K., Ighalo, J.O. (2022) Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustain Environ Res 32(1), 1–15.
  • [4] Ighalo, J.O., Sagboye, P.A., Umenweke, G., Ajala, J.O., Omoarukhe, F.O., Adeyanju, C.A., Ogunniyi, S., Adeniyi, A.G. (2021) CuO Nanoparticles (CuO NPs) for Water Treatment: A Review of Recent Advances. Environ Nanotechnology, 15, 100443.
  • [5] Kannan, S.K., Sundrarajan, M. (2015) Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract. Bull Mater Sci., 38, 945–950.
  • [6] Cazado, M.E., Goldberg. E., Togneri, M.A., Denis, A., Soba, A. (2021) A new irradiation growth model for Zr-based components of nuclear reactors for the DIONISIO code. Nucl Eng Des., 373, 111009.
  • [7] Sekulić, A., Furić, K., Stubičar, M. (1997) Raman study of phase transitions in pure and alloyed zirconia induced by ball-milling and a laser beam. In: Journal of Molecular Structure, 410-411, 275-279.
  • [8] Ray, J.C., Saha, C.R., Pramanik, P. (2002) Stabilized nanoparticles of metastable ZrO2 with Cr3+/Cr4+ cations: Preparation from a polymer precursor and the study of the thermal and structural properties. J Eur Ceram Soc., 22(6), 851-862.
  • [9] Peshev, P., Stambolova, I., Vassilev, S., Stefanov, P., Blaskov, V., Starbova, K., Starbov, N. (2003) Spray pyrolysis deposition of nanostructured zirconia thin films. Mater Sci Eng B Solid-State Mater Adv Technol., 97 (1), 106-110.
  • [10] Tran, V., Nguyen, D.T.C., Kumar, P.S., Din, A.T.M., Jalil, A.A., Vo, D.V.N. (2022) Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ. Chem. Lett., 20, 1309–1331.
  • [11] Zink, N., Emmerling, F., Häger, T., Panthöfer, M., Tahir, M.N., Kolb, U., Tremel, W. (2013) Low temperature synthesis of monodisperse nanoscaled ZrO2 with a large specific surface area. Dalt Trans., 42, 432-440.
  • [12] Dong, Z., Yang, Q., Mei, M., Liu, L., Sun, J., Zhao, L., Zhou, C. (2018) Preparation and characterization of fluoride calcium silicate composites with multi-biofunction for clinical application in dentistry. Compos Part B Eng., 143, 243-249.
  • [13] Kim, J.S., Lee, D.H., Kang, S., Bae, D.S., Park, H.Y., Na, M.K. (2009) Synthesis and microstructure of zirconia nanopowders by glycothermal processing. Trans Nonferrous Met Soc China (English Ed.), 19(1), 88-91.
  • [14] Geethalakshmi, T.P., Hemalatha, J. (2012) Dielectric Studies on Nano Zirconium Dioxide Synthesized through Co-Precipitation Process. Int J Mater Metall Eng., 6(4), 256-259.
  • [15] Kumar, S., Bhanjana, G., Dilbaghi, N., Manuja, A. (2012) Comparative investigation of cellular response of nanoparticles. Adv Mater Lett., 3(4), 345-349.
  • [16] Reddy, B.M., Sreekanth, P.M., Yamada, Y., Kobayashi, T. (2005) Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3-ZrO2 solid acid catalysts. J Mol Catal A Chem., 227, 81-89.
  • [17] Mueller, R., Jossen, R., Pratsinis, S.E., Watson, M., Kamal Akhtar, M. (2004) Zirconia Nanoparticles Made in Spray Flames at High Production Rates. J Am Ceram Soc., 87(2), 197-202.
  • [18] Pal, G., Rai, P., Pandey, A. (2019) Green Synthesis, Characterization and Applications of Nanoparticles, Ashutosh Kumar Shukla, Siavash Iravani, Green synthesis of nanoparticles: A greener approach for a cleaner future (1-26), Elsevier, United States.
  • [19] Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., He, F., Hong, J. (2022) Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov., 26, 102336.
  • [20] Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P., Yacaman, M.J. (2002) Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. Nano Lett., 2(4), 397–401.
  • [21] Singh, A.V., Batuwangala, M., Mundra, R., Mehta, K., Patke, S., Falletta, E., Patil, R., Gade, W.N. (2014) Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: A novel paclitaxel drug delivery vehicle. ACS Appl Mater Interfaces., 6(16), 14679–14689.
  • [22] V. Singh, A., Patil, R., Anand, A., Milani, P., Gade, W.N. (2010) Biological Synthesis of Copper Oxide Nano Particles Using Escherichia coli. Curr Nanosci., 6(4), 365-369.
  • [23] Parab, H., Shenoy, N., Kumar, S.A., Kumar, S.D., Reddy, A.V.R., (2016) One pot spontaneous green synthesis of gold nanoparticles using Cocos nucifera (coconut palm) coir extract. J Mater Environ Sci. 7(7), 2468-2481.
  • [24] Aitenneite, H., Abboud, Y., Tanane, O., Solhy, A., Sebti, S., El Bouari, A., (2016) Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous Phoenix dactylifera L. (date palm) leaf extract and their catalytic activity for 4-Nitrophenol reduction. J Mater Environ Sci. 7(7), 2335-2339.
  • [25] Tan, D., Teng, Y., Liu, Y., Zhuang, Y., Qiu, J. (2009) Preparation of zirconia nanoparticles by pulsed laser ablation in liquid. Chem Lett., 38(11), 1102-1103.
  • [26] Brossmann, U., Sagmeister, M., Pölt, P., Kothleitner, G., Letofsky-Papst, I., Szabó D, V., Würschum, R. (2007) Microwave plasma synthesis of nano-crystalline YSZ. Phys Status Solidi - Rapid Res Lett., 1(3), 107-109.
  • [27] Salavati-Niasari, M., Dadkhah, M., Davar, F. (2009) Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor. Polyhedron., 28(14), 3005-3009.
  • [28] Meetei, S.D., Singh, S.D. (2014) Hydrothermal synthesis and white light emission of cubic ZrO 2:Eu3+ nanocrystals. J Alloys Compd., 587, 143-147.
  • [29] Majedi, A., Davar, F., Abbasi, A. (2014) Sucrose-mediated sol-gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J Ind Eng Chem., 20(6), 4215-4223.
  • [30] Lin, C., Zhang, C., Lin, J. (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the pechini-type sol-gel process. J Phys Chem C., 111(8), 3300–3307.
  • [31] Devi, H.S., Boda, M.A., Shah, M.A., Parveen, S., Wani, A.H. (2019) Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth., 8(1), 0145.
  • [32] Can, M. (2020) Green gold nanoparticles from plant-derived materials: An overview of the reaction synthesis types, conditions, and applications. Rev. Chem. Eng., 36(7), 145915309.
  • [33] Vijay Kumar, P.P.N., Pammi, S.V.N., Kollu, P., Satyanarayana, K.V.V., Shameem, U. (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind Crops Prod., 52, 562-566.
  • [34] Leili, M., Fazlzadeh, M., Bhatnagar, A. (2018) Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environ Technol (United Kingdom)., 39(9), 1158- 1172.
  • [35] Narayanan, K.B., Sakthivel, N. (2010) Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 156 (1-2), 1-13.
  • [36] Ash, A., Revati, K., Pandey, B.D. (2011) Microbial synthesis of iron-based nanomaterials - A review. Bull. Mater. Sci., 34, 191–198.
  • [37] Hasan, S.S., Singh, S., Parikh, R.Y., Dharne, M.S., Patole, M.S., Prasad, B.L.V., Shouche, Y.S. (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol., 8(6), 3191-6.
  • [38] Huang, J., Lin, L., Li, Q., Sun, D., Wang, Y., Lu, Y., He, N., Yang, K., Yang, X., Wang, H., Wang, W., Lin, W. (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res., 47 (16), 6081–6090.
  • [39] Sweeney, R.Y., Mao, C., Gao, X., Burt, J.L., Belcher, A.M., Georgiou, G., Iverson, B.L. (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol., 11(11), 1553-9.
  • [40] Deniz, F., Adıgüzel, A.O., Mazmancı, M.A. (2019) The biosynthesis of silver nanoparticles with Coriolus versicolor. Turkish J Eng., 3(2), 92-96.
  • [41] Ram, S., Mitra, M., Shah, F., Tirkey, S.R., Mishra, S. (2020) Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J. Funct. Foods, 67, 103867.
  • [42] Suriyaraj, S.P., Ramadoss, G., Chandraraj, K., Selvakumar, R. (2019) One pot facile green synthesis of crystalline bio-ZrO2 nanoparticles using Acinetobacter sp. KCSI1 under room temperature. Mater Sci Eng C Mater Biol Appl., 105, 110021.
  • [43] Ahmed, T., Ren, H., Noman, M., Shahid, M., Liu, M., Ali, M.A., Zhang, J., Tian, Y., Qi, X., Li, B. (2021) Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. NanoImpact., 21, 100281.
  • [44] Bansal, V., Rautaray, D., Ahmad, A., Sastry, M. (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem.,14 (22), 3303- 3305.
  • [45] Dwivedi, R., Maurya, A., Verma, A., Prasad, R., Bartwal, K.S. (2011) Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd., 509 (24), 6848-6851.
  • [46] Baby, Asha, S., Muthuraj, D., Kumar, E., Veeraputhiran, V. (2019) Synthesis and Characterization of ZrO2 Nanoparticles using Microwave Assisted Method and Its Antimicrobial Activity. J Nanosci Technol., 5(1), 642-644.
  • [47] Lim, H.S., Ahmad, A., Hamzah, H. (2013) Synthesis of zirconium oxide nanoparticle by sol-gel technique. In: AIP Conference Proceedings, 1571, 812.
  • [48] Lanje, A.S., Ningthoujam, R.S., Sharma, S.J., Pode, R.B., Vatsa, R.K., (2010) Luminescence properties of Sn1-xFexO2 Nanoparticles. Int J Nanotechnol., 7, 9-12.
  • [49] Bokuniaeva, A.O., Vorokh, A.S. (2019) Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder. In: Journal of Physics: Conference Series, Conf. Ser. 1410 012057.
  • [50] Zhang, H., Chen, G. (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol., 43, 8, 2905– 2910.
  • [51] M. Lopez Goerne, T. (2011) Study of Bacterial Sensitivity to Ag-TiO2 Nanoparticles. J Nanomed Nanotechnol., S5, 003.
  • [52] Masoodiyeh, F., Karimi-Sabet, J., Khanchi, A.R., Mozdianfard, M.R. (2015) Zirconia nanoparticle synthesis in sub and supercritical water - particle morphology and chemical equilibria. Powder Technol., 269, 461-469.
APA KOŞARSOY AĞÇELİ G, HAMMAMCHI H, Cihangir N, Aksu Z (2023). Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. , 224 - 238. 10.18185/erzifbed.1174027
Chicago KOŞARSOY AĞÇELİ GÖZDE,HAMMAMCHI Hamideh,Cihangir Nilufer,Aksu Zumriye Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. (2023): 224 - 238. 10.18185/erzifbed.1174027
MLA KOŞARSOY AĞÇELİ GÖZDE,HAMMAMCHI Hamideh,Cihangir Nilufer,Aksu Zumriye Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. , 2023, ss.224 - 238. 10.18185/erzifbed.1174027
AMA KOŞARSOY AĞÇELİ G,HAMMAMCHI H,Cihangir N,Aksu Z Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. . 2023; 224 - 238. 10.18185/erzifbed.1174027
Vancouver KOŞARSOY AĞÇELİ G,HAMMAMCHI H,Cihangir N,Aksu Z Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. . 2023; 224 - 238. 10.18185/erzifbed.1174027
IEEE KOŞARSOY AĞÇELİ G,HAMMAMCHI H,Cihangir N,Aksu Z "Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity." , ss.224 - 238, 2023. 10.18185/erzifbed.1174027
ISNAD KOŞARSOY AĞÇELİ, GÖZDE vd. "Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity". (2023), 224-238. https://doi.org/10.18185/erzifbed.1174027
APA KOŞARSOY AĞÇELİ G, HAMMAMCHI H, Cihangir N, Aksu Z (2023). Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(1), 224 - 238. 10.18185/erzifbed.1174027
Chicago KOŞARSOY AĞÇELİ GÖZDE,HAMMAMCHI Hamideh,Cihangir Nilufer,Aksu Zumriye Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16, no.1 (2023): 224 - 238. 10.18185/erzifbed.1174027
MLA KOŞARSOY AĞÇELİ GÖZDE,HAMMAMCHI Hamideh,Cihangir Nilufer,Aksu Zumriye Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.16, no.1, 2023, ss.224 - 238. 10.18185/erzifbed.1174027
AMA KOŞARSOY AĞÇELİ G,HAMMAMCHI H,Cihangir N,Aksu Z Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 16(1): 224 - 238. 10.18185/erzifbed.1174027
Vancouver KOŞARSOY AĞÇELİ G,HAMMAMCHI H,Cihangir N,Aksu Z Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 16(1): 224 - 238. 10.18185/erzifbed.1174027
IEEE KOŞARSOY AĞÇELİ G,HAMMAMCHI H,Cihangir N,Aksu Z "Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16, ss.224 - 238, 2023. 10.18185/erzifbed.1174027
ISNAD KOŞARSOY AĞÇELİ, GÖZDE vd. "Biosynthesis of Zirconium dioxide nanoparticles by Streptomyces sp. HC1: Characterization and Bioactivity". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16/1 (2023), 224-238. https://doi.org/10.18185/erzifbed.1174027