Yıl: 2023 Cilt: 28 Sayı: 1 Sayfa Aralığı: 1 - 10 Metin Dili: İngilizce DOI: 10.5578/flora.20239683 İndeks Tarihi: 02-05-2023

CRISPR Technology and Its Importance in SARS-CoV-2 Treatment

Öz:
Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) predominantly affects the respiratory system. The COVID-19 pandemic has had devastating effects on the health system and the global economy worldwide. To reduce the worsening impact of the pandemic, various treatment options and vaccines have been developed. Despite these efforts the pandemic could not be stopped because of the single-stranded nature of the virus combined with the lack of proof-reading abilities of the RNA-dependent RNA polymerase (RdRp). This results in a high probability of error in the copying process and consequently, mutations occur. The increase in mutations in SARS-CoV-2 reduced the efficacy of antiviral medicines and vaccines. To fight this problem, studies were conducted on the efficacy and safety of using Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) in the diagnosis and treatment of COVID-19. Initially, discovered in archaea, CRISPR is a gene-editing tool that works by altering specific parts of the genome. In this review, we focused on the efficacy and safety of CRISPR technology in the treatment of COVID-19.
Anahtar Kelime:

CRISPR Teknolojisi ve SARS-CoV-2 Tedavisindeki Önemi

Öz:
Şiddetli akut solunum yolu sendromu koronavirüs-2 (SARS-CoV-2) virüsünün neden olduğu Koronavirüs hastalığı-2019 (COVID- 19), ağırlıklı olarak solunum yolunu etkilemektedir. COVID-19 pandemisi dünya çapında sağlık ve ekonomik sorunlara yol açmıştır. Pandeminin etkisini azaltmak için tedavi ve aşı çalışmaları yapılmıştır. Buna rağmen SARS-CoV-2 virüsünün RNA’ya bağımlı RNA polimerazının (RdRp) yetersiz kontrol mekanizmasının kopyalama işlemlerinde neden olduğu mutasyonlar yüzünden pandemi durdurulamamıştır. Yüksek mutasyon oranı, geliştirilen aşıların ve antiviral ilaçların etkinliğinin azalmasına neden olmuştur. Buna çözüm olarak, CRISPR sisteminin COVID-19 tedavi ve tanısındaki etkinliği ve güvenliği üzerine araştırmalar yapılmıştır. CRISPR sistemi, ilk olarak arkea bakterilerde keşfedilen, spesifik gen bölgelerini değiştirebilecek bir genom düzenleme aracıdır. Bu derlemede CRISPR teknolojisinin COVID-19 tedavisindeki güvenliği ve etkinliğine odaklanılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Lu L, Su S, Yang H, Jiang S. Antivirals with common targets against highly pathogenic viruses. Cell 2021;184:1604-20. https://doi.org/10.1016/j.cell.2021.02.013
  • 2. Worldometer. COVID-19 coronavirus pandemic. Available from: www.worldometers.info/coronavirus/ (Accessed date: 22.08.2022).
  • 3. Alimohamadi Y, Sepandi M, Taghdir M, Hosamirudsari H. Determine the most common clinical symptoms in COVID- 19 patients: A systematic review and meta-analysis. J Prev Med Hyg 2020;61:E304-E312.
  • 4. Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 2020;368. https:// doi.org/10.1136/bmj.m606
  • 5. WHO. COVID-19 Vaccines within WHO EUL/PQ evaluation process. Available from: https://extranet.who.int/pqweb/ sites/default/files/documents/Status_COVID_VAX_07July2022. pdf (Accessed date: 23.08.2022).
  • 6. FDA. COVID-19 Drugs. Available from: www.fda.gov/drugs/ emergency-preparedness-drugs/coronavirus-covid-19-drugs (Accessed date: 23.08.2022).
  • 7. Collier DA, De Marco A, Ferreira IA, Meng B, Datir RP, Walls AC, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine- elicited antibodies. Nature 2021;593:136-41.
  • 8. Nguyen TM, Zhang Y, Pandolfi PP. Virus against virus: A potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. Cell Research 2020;30:189-90. https://doi. org/10.1038/s41422-020-0290-0
  • 9. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-12. https://doi.org/10.1126/science.1138140
  • 10. Karginov FV, Hannon GJ. The CRISPR system: Small RNA-guided defense in bacteria and archaea. Mol Cell 2010;37:7-19. https://doi.org/10.1016/j.molcel. 2009.12.033
  • 11. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987;169:5429-33. https://doi.org/10.1128/ jb.169.12.5429-5433.1987
  • 12. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016;353:aaf5573. https://doi.org/10.1126/science. aaf5573
  • 13. Wu R, Wang L, Kuo HC, Shannar A, Peter R, Chou PJ, et al. An update on current therapeutic drugs treating COVID- 19. Curr Pharmacol Rep 2020;6:56-70. https://doi. org/10.1007/s40495-020-00216-7
  • 14. Marzi M, Vakil MK, Bahmanyar M, Zarenezhad E. Paxlovid: Mechanism of Action, Synthesis, and In Silico Study. BioMed Res Int 2022;2022:7341493. https://doi. org/10.1155/2022/7341493
  • 15. Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, et al. Mechanism of molnupiravir-induced SARSCoV- 2 mutagenesis. Nat Struct Mol Biol 2021;28:740-6. https://doi.org/10.1038/s41594-021-00651-0
  • 16. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018;9:e00221-18. https://doi.org/10.1128/mBio.00221-18
  • 17. Nabati M, Parsaee H. Potential cardiotoxic effects of remdesivir on cardiovascular system: A literature review. Cardiovasc Toxicol 2021:1-5.
  • 18. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of COVID-19. NEJM 2020;383:1813-26. https://doi.org/10.1056/NEJMoa2007764
  • 19. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. NEJM 2022;386:509-20. https://doi.org/10.1056/NEJMoa2116044
  • 20. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with COVID-19. NEJM 2022;386:1397- 408. https://doi.org/10.1056/NEJMoa2118542
  • 21. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat Rev Drug Discov 2021;20:817-38. https://doi. org/10.1038/s41573-021-00283-5
  • 22. Park JW, Lagniton PN, Liu Y, Xu RH. mRNA vaccines for COVID- 19: What, why and how. Int J Biol Sci 2021;17:1446- 60. https://doi.org/10.7150/ijbs.59233
  • 23. Chemaitelly H, Yassine HM, Benslimane FM, Al Khatib HA, Tang P, Hasan MR, et al. mRNA-1273 COVID-19 vaccine effectiveness against the B.1.1.7 and B.1.351 variants and severe COVID-19 disease in Qatar. Nat Med 2021; 27:1614- 21. https://doi.org/10.1038/s41591-021-01446-y
  • 24. Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 COVID-19 Vaccine against the B.1.1.7 and B.1.351 Variants. NEJM 2021;385:187-9. https://doi. org/10.1056/NEJMc2104974
  • 25. Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021;267:2-8. https://doi.org/10.1016/j. lfs.2020.118919
  • 26. Mammen MP, Tebas P, Agnes J, Giffear M, Kraynyak KA, Blackwood E, et al. Safety and immunogenicity of INO- 4800 DNA vaccine against SARS-CoV-2: A preliminary report of a randomized, blinded, placebo-controlled, Phase 2 clinical trial in adults at high risk of viral exposure. medRxiv 2021. https://doi.org/10.1101/2021.05.07.21256652
  • 27. Alharbi NK, Padron-Regalado E, Thompson CP, Kupke A, Wells D, Sloan MA, et al. ChAdOx1 and MVA based vaccine candidates against MERS-CoV elicit neutralizing antibodies and cellular immune responses in mice. Vaccine 2017;35(30):3780-8. https://doi.org/10.1016/j.vaccine. 2017.05.032
  • 28. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. NEJM 2021;384:1885- 98.
  • 29. Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. Efficacy of NVX-CoV2373 COVID-19 vaccine against the B.1.351 variant. NEJM 2021;384:1899-909. https://doi.org/10.1056/NEJMoa2103055
  • 30. Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 2021;12:1-4. https://doi. org/10.1038/s41467-020-20653-8
  • 31. Marta RA, Nakamuea GEK, Matos Aquino B, Bigardi PR. COVID-19 vaccines: Update of the vaccines in use and under development. Vacunas 2022;00248:1-15 https://doi. org/10.1016/j.vacun.2022.06.003
  • 32. Heinz FX, Stiasny K. Distinguishing features of current COVID- 19 vaccines: Knowns and unknowns of antigen presentation and modes of action. npj Vaccines 2021;6:1-3. https://doi.org/10.1038/s41541-021-00369-6
  • 33. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011;9:467-77. https://doi.org/10.1038/nrmicro2577
  • 34. Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 2014;54:234- 44 https://doi.org/10.1016/j.molcel.2014.03.011
  • 35. Makarova KS, Wolf YI, Koonin EV. The basic building blocks and evolution of CRISPR-Cas systems. Biochem Soc Trans 2013;41:1392-400. https://doi.org/10.1042/ BST20130038
  • 36. Jiang F, Doudna JA. The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 2015;30:100-11. https:// doi.org/10.1016/j.sbi.2015.02.002
  • 37. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 2013;10:841-51. https://doi.org/10.4161/rna.24203
  • 38. Moya-Beltrán A, Makarova KS, Acuña LG, Wolf YI, Covarrubias PC, Shmakov SA, et al. Evolution of type IV CRISPR-Cas systems: Insights from CRISPR loci in integrative conjugative elements of acidithiobacillia. The CRISPR J 2021;4:656- 72. https://doi.org/10.1089/crispr.2021.0051
  • 39. Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, et al. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell 2020;181:865-76. https://doi.org/10.1016/j.cell.2020.04.020
  • 40. Zeng L, Liu Y, Nguyenla XH, Abbott TR, Han M, Zhu Y, et al. Broad-spectrum CRISPR-mediated inhibition of SARSCoV- 2 variants and endemic coronaviruses in vitro. Nat Commun 2022;13:1-6. https://doi.org/10.1038/s41467- 022-30546-7
  • 41. Shen Y, Eades W, Yan B. The COVID-19 medicine remdesivir is therapeutically activated by carboxylesterase-1, and excessive hydrolysis increases cytotoxicity. Hepatol Commun 2021;5:1622. https://doi.org/10.1002/hep4.1736
APA Saracaydin G, Ozer Cakir O (2023). CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. , 1 - 10. 10.5578/flora.20239683
Chicago Saracaydin Genc,Ozer Cakir Ozlem CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. (2023): 1 - 10. 10.5578/flora.20239683
MLA Saracaydin Genc,Ozer Cakir Ozlem CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. , 2023, ss.1 - 10. 10.5578/flora.20239683
AMA Saracaydin G,Ozer Cakir O CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. . 2023; 1 - 10. 10.5578/flora.20239683
Vancouver Saracaydin G,Ozer Cakir O CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. . 2023; 1 - 10. 10.5578/flora.20239683
IEEE Saracaydin G,Ozer Cakir O "CRISPR Technology and Its Importance in SARS-CoV-2 Treatment." , ss.1 - 10, 2023. 10.5578/flora.20239683
ISNAD Saracaydin, Genc - Ozer Cakir, Ozlem. "CRISPR Technology and Its Importance in SARS-CoV-2 Treatment". (2023), 1-10. https://doi.org/10.5578/flora.20239683
APA Saracaydin G, Ozer Cakir O (2023). CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 28(1), 1 - 10. 10.5578/flora.20239683
Chicago Saracaydin Genc,Ozer Cakir Ozlem CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi 28, no.1 (2023): 1 - 10. 10.5578/flora.20239683
MLA Saracaydin Genc,Ozer Cakir Ozlem CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, vol.28, no.1, 2023, ss.1 - 10. 10.5578/flora.20239683
AMA Saracaydin G,Ozer Cakir O CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi. 2023; 28(1): 1 - 10. 10.5578/flora.20239683
Vancouver Saracaydin G,Ozer Cakir O CRISPR Technology and Its Importance in SARS-CoV-2 Treatment. Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi. 2023; 28(1): 1 - 10. 10.5578/flora.20239683
IEEE Saracaydin G,Ozer Cakir O "CRISPR Technology and Its Importance in SARS-CoV-2 Treatment." Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi, 28, ss.1 - 10, 2023. 10.5578/flora.20239683
ISNAD Saracaydin, Genc - Ozer Cakir, Ozlem. "CRISPR Technology and Its Importance in SARS-CoV-2 Treatment". Flora İnfeksiyon Hastalıkları ve Klinik Mikrobiyoloji Dergisi 28/1 (2023), 1-10. https://doi.org/10.5578/flora.20239683