Yıl: 2023 Cilt: 30 Sayı: 4 Sayfa Aralığı: 449 - 454 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2022.12.376 İndeks Tarihi: 03-05-2023

An experimental study: Diabetic nephropathy and oxidative damage relationship

Öz:
Aim: The increase of oxidatif stress caused by hyperglycemia in diabetes contributes to diabetic complications such as nephropathy. Experimental Diabetes Mellitus (DM) was induced with streptozotocin. Thioctic acid (TA), which has antioxidant properties, is a vital cofactor of mitochondrial respiration enzymes. This study investigated whether TA administration could reduce oxidative stress to treat diabetic nephropathy. Materials and Methods: 40 male Wistar albino rats were divided to groups: Control, DM, TA and DM+TA. TA and DM+TA group was administered 100 mg/kg/day TA daily, and blood glucose was assessed for six weeks. The superoxide dismutase, glutathione peroxidase and catalase activities, glutathione levels, malondialdehyde (MDA), protein carbonyl (PC), total antioxidant (TAS), total oxidant status (TOS) and OSI also were evaluated. Results: MDA and PC were increased, and antioxidant capacity was decreased in the diabetic groups compared to Control (p <0.05). In the DM+TA group, MDA, PC and TOS were decreased and TAS was increased compared to the DM group (p <0.05). Conclusion: TA exhibited a curative effect on diabetic nephropathy by increasing an tioxidant activity and reducing oxidative damage.
Anahtar Kelime: Diabetic nephropathy Kidney Protein carbonylation Thioctic acid Rat

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bhusal A, Jamarkattel N, Shrestha A, Lamsal NK, Shakya S, Rajbhandari SJJoc, et al. Evaluation of antioxidative and antidiabetic activity of bark of Holarrhena pubescens Wall. 2014;8(9):HC05.
  • 2. Wild S, Roglic G, Green A, Sicree R, King H. Global preva lence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047-53. doi: 10.2337/di acare.27.5.1047.
  • 3. Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci. 2014;35(5):741-51. doi: 10.1007/s10072-013-1594-3.
  • 4. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302-8. doi: 10.1681/ASN.2012070718.
  • 5. Kadowaki T, Komuro I, Morita N, Akiyama H, Kidani Y, Yajima T. Manifestation of Heart Failure and Chronic Kidney Disease are Associated with Increased Mortality Risk in Early Stages of Type 2 Diabetes Mellitus: Analysis of a Japanese Real-World Hospital Claims Database. Diabetes Ther. 2022;13(2):275-86. doi: 10.1007/s13300-021-01191-y.
  • 6. Pitkanen OM, Martin JM, Hallman M, Akerblom HK, Sar iola H, Andersson SM. Free radical activity during develop ment of insulin-dependent diabetes mellitus in the rat. Life Sci. 1992;50(5):335-9. doi: 10.1016/0024-3205(92)90434-q.
  • 7. Van Dam PS, Van Asbeck BS, Erkelens DW, Marx JJ, Gispen WH, Bravenboer B. The role of oxidative stress in neuropathy and other diabetic complications. Diabetes/metabolism reviews. 1995;11(3):181-92. doi: 10.1002/dmr.5610110303.
  • 8. Bukan N, Sancak B, Yavuz O, Koca C, Tutkun F, Ozcelikay AT, et al. Lipid peroxidation and scavenging enzyme levels in the liver of streptozotocin-induced diabetic rats. Indian J Biochem Biophys. 2003;40(6):447-50.
  • 9. Golbidi S, Badran M, Laher I. Diabetes and alpha lipoic Acid. Frontiers in pharmacology. 2011;2:69-. doi: 10.3389/fphar.2011.00069.
  • 10. Dragomanova S, Miteva S, Nicoletti F, Mangano K, Fagone P, Pricoco S, et al. Therapeutic Potential of Alpha-Lipoic Acid in Viral Infections, including COVID-19. Antioxidants (Basel). 2021;10(8). doi: 10.3390/antiox10081294.
  • 11. Anthony RM, MacLeay JM, Gross KL. Alpha-Lipoic Acid as a Nutritive Supplement for Humans and Animals: An Overview of Its Use in Dog Food. Animals (Basel). 2021;11(5). doi: 10.3390/ani11051454.
  • 12. Gruzman A, Hidmi A, Katzhendler J, Haj-Yehie A, Sasson S. Synthesis and characterization of new and potent alpha-lipoic acid derivatives. Bioorg Med Chem. 2004;12(5):1183-90. doi: 10.1016/j.bmc.2003.11.025.
  • 13. Eguiluz Lumbreras P, Palacios Hernandez A, Gomez Zancajo VR, Heredero Zorzo O, Garcia Garcia J, Canada de Arriba F, et al. Nephrectomy in polycystic kidney disease before transplan tation. Arch Esp Urol. 2010;63(5):403.
  • 14. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat fed, streptozotocin-treated rat. Metabolism. 2000;49(11):1390-4. doi: 10.1053/meta.2000.17721.
  • 15. Crouch R, Kimsey G, Priest DG, Sarda A, Buse MG. Effect of streptozotocin on erythrocyte and retinal superoxide dismutase. Diabetologia. 1978;15(1):53-7. doi: 10.1007/BF01219329.
  • 16. Tanbek K, Ozerol E, Gul M. Effects of Alpha Lipoic Acid Learn ing Behaviors and Histological Examinationon Brain Tissue on Diabetic rats. Acta Physiologica. 2017;221:110-.
  • 17. Arslan AK, Yaşar Ş, Çolak C, Yoloğlu SJTKB. WSSPAS: An Interactive Web Application for Sample Size and Power Analysis with R Using Shiny. 2018;10(3):224-46.
  • 18. Çolak C, PARLAKPINAR HJJoTOMC. Hayvan deneyleri: in vivo denemelerin bildirimi: ARRIVE Kılavuzu-Derleme. 2012;19(2):128-31.
  • 19. Thakur AK, Rai G, Chatterjee SS, Kumar V. Beneficial effects of an Andrographis paniculata extract and andrographolide on cog nitive functions in streptozotocin-induced diabetic rats. Pharm Biol. 2016;54(9):1528-38. doi: 10.3109/13880209.2015.1107107.
  • 20. Liu J, Feng L, Ma D, Zhang M, Gu J, Wang S, et al. Neu roprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. Neuro science letters. 2013;549:63-8. doi: 10.1016/j.neulet.2013.06.002.
  • 21. Cintra LT, Samuel RO, Prieto AK, Sumida DH, Dezan Junior E, Gomes-Filho JE. Oral health, diabetes, and body weight. Archives of oral biology. 2017;73:94-9. doi: 10.1016/j.archoralbio.2016.10.002.
  • 22. Skalska S, Kucera P, Goldenberg Z, Stefek M, Kyselova Z, Jari abka P, et al. Neuropathy in a rat model of mild diabetes induced by multiple low doses of streptozotocin: effects of the antioxi dant stobadine in comparison with a high-dose alpha-lipoic acid treatment. Gen Physiol Biophys. 2010;29(1):50-8.
  • 23. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988;34(3):497-500.
  • 24. Aebi H, Wyss SR, Scherz B, Skvaril F. Heterogeneity of erythro cyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem. 1974;48(1):137-45. doi: 10.1111/j.1432-1033.1974.tb03751.x.
  • 25. Paglia DE, Valentine WN. Studies on the quantitative and qual itative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70(1):158-69.
  • 26. Beutler E, Duron O, Kelly BM. Improved method for the deter mination of blood glutathione. J Lab Clin Med. 1963;61:882-8.
  • 27. Esterbauer H, Cheeseman KH. Determination of aldehy dic lipid peroxidation products: malonaldehyde and 4- hydroxynonenal. Methods Enzymol. 1990;186:407-21. doi: 10.1016/0076-6879(90)86134-h.
  • 28. Reznick AZ, Packer L. Oxidative damage to proteins: spec trophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357-63. doi: 10.1016/s0076-6879(94)33041-7.
  • 29. Erel O. A novel automated direct measurement method for to tal antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical biochemistry. 2004;37(4):277-85. doi: 10.1016/j.clinbiochem.2003.11.015.
  • 30. Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical biochem istry. 2004;37(2):112-9. doi: 10.1016/j.clinbiochem.2003.10.014.
  • 31. Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry. 2005;38(12):1103-11. doi: 10.1016/j.clinbiochem.2005.08.008.
  • 32. Pontuch P. [Diabetic nephropathy]. Bratislavske lekarske listy. 2000;101(10):583-5.
  • 33. Lupusoru G, Ailincai I, Sorohan BM, Andronesi A, Achim C, Micu G, et al. Serum soluble urokinase plasminogen activator receptor as a potential biomarker of renal impairment severity in diabetic nephropathy. Diabetes Res Clin Pract. 2021;182:109116. doi: 10.1016/j.diabres.2021.109116.
  • 34. Hong YA, Lim JH, Kim MY, Kim Y, Park HS, Kim HW, et al. Extracellular Superoxide Dismutase Attenuates Renal Oxidative Stress Through the Activation of Adenosine Monophosphate Activated Protein Kinase in Diabetic Nephropathy. Antioxid Re dox Signal. 2018;28(17):1543-61. doi: 10.1089/ars.2017.7207.
  • 35. Ozbek E. Induction of oxidative stress in kidney. Int J Nephrol. 2012;2012:465897. doi: 10.1155/2012/465897.
  • 36. Maritim AC, Sanders RA, Watkins JB, 3rd. Effects of alpha lipoic acid on biomarkers of oxidative stress in streptozotocin induced diabetic rats. J Nutr Biochem. 2003;14(5):288-94. doi: 10.1016/s0955-2863(03)00036-6.
  • 37. Ozkan Y, Yilmaz O, Ozturk AI, Ersan Y. Effects of triple antioxidant combination (vitamin E, vitamin C and alpha lipoic acid) with insulin on lipid and cholesterol levels and fatty acid composition of brain tissue in experimental diabetic and non-diabetic rats. Cell Biol Int. 2005;29(9):754-60. doi: 10.1016/j.cellbi.2005.04.011.
  • 38. Yang W, Luo Y, Yang S, Zeng M, Zhang S, Liu J, et al. Ectopic lipid accumulation: potential role in tubular injury and inflammation in diabetic kidney disease. Clin Sci (Lond). 2018;132(22):2407-22. doi: 10.1042/CS20180702.
  • 39. Koroglu OF, Gunata M, Vardi N, Yildiz A, Ates B, Co lak C, et al. Protective effects of naringin on valproic acid induced hepatotoxicity in rats. Tissue Cell. 2021;72:101526. doi: 10.1016/j.tice.2021.101526.
  • 40. Kim TJ, Byun JS, Kwon HS, Kim DY. Cellular toxicity driven by high-dose vitamin C on normal and cancer stem cells. Biochem Biophys Res Commun. 2018;497(1):347-53. doi: 10.1016/j.bbrc.2018.02.083.
  • 41. Tuncdemir M, Ozturk M. The effects of ACE inhibitor and angiotensin receptor blocker on clusterin and apoptosis in the kidney tissue of streptozotocin-diabetic rats. J Mol Histol. 2008;39(6):605-16. doi: 10.1007/s10735-008-9201-2.
  • 42. Wang Y, Bi R, Quan F, Cao Q, Lin Y, Yue C, et al. Ferroptosis involves in renal tubular cell death in dia betic nephropathy. Eur J Pharmacol. 2020;888:173574. doi: 10.1016/j.ejphar.2020.173574.
  • 43. Yi W, Xie X, Du M, Bu Y, Wu N, Yang H, et al. Green Tea Polyphenols Ameliorate the Early Renal Damage Induced by a High-Fat Diet via Ketogenesis/SIRT3 Pathway. Oxida tive medicine and cellular longevity. 2017;2017:9032792. doi: 10.1155/2017/9032792.
  • 44. Tang J, Yan H, Zhuang S. Inflammation and oxidative stress in obesity-related glomerulopathy. Int J Nephrol. 2012;2012:608397. doi: 10.1155/2012/608397.
  • 45. Karadsheh NS, Quttaineh NA, Karadsheh SN, El-Khateeb M. Effect of combined G6PD deficiency and diabetes on pro tein oxidation and lipid peroxidation. BMC Endocr Disord. 2021;21(1):246. doi: 10.1186/s12902-021-00911-6.
  • 46. Duman C, Erden FJSTED. Birinci basamak sağlık hizmetler ine yönelik biyokimyasal laboratuvar verilerinin kısa yorumu. 2004;13(7):256-62.
APA Tanbek K, Sandal S (2023). An experimental study: Diabetic nephropathy and oxidative damage relationship. , 449 - 454. 10.5455/annalsmedres.2022.12.376
Chicago Tanbek Kevser,Sandal Suleyman An experimental study: Diabetic nephropathy and oxidative damage relationship. (2023): 449 - 454. 10.5455/annalsmedres.2022.12.376
MLA Tanbek Kevser,Sandal Suleyman An experimental study: Diabetic nephropathy and oxidative damage relationship. , 2023, ss.449 - 454. 10.5455/annalsmedres.2022.12.376
AMA Tanbek K,Sandal S An experimental study: Diabetic nephropathy and oxidative damage relationship. . 2023; 449 - 454. 10.5455/annalsmedres.2022.12.376
Vancouver Tanbek K,Sandal S An experimental study: Diabetic nephropathy and oxidative damage relationship. . 2023; 449 - 454. 10.5455/annalsmedres.2022.12.376
IEEE Tanbek K,Sandal S "An experimental study: Diabetic nephropathy and oxidative damage relationship." , ss.449 - 454, 2023. 10.5455/annalsmedres.2022.12.376
ISNAD Tanbek, Kevser - Sandal, Suleyman. "An experimental study: Diabetic nephropathy and oxidative damage relationship". (2023), 449-454. https://doi.org/10.5455/annalsmedres.2022.12.376
APA Tanbek K, Sandal S (2023). An experimental study: Diabetic nephropathy and oxidative damage relationship. Annals of Medical Research, 30(4), 449 - 454. 10.5455/annalsmedres.2022.12.376
Chicago Tanbek Kevser,Sandal Suleyman An experimental study: Diabetic nephropathy and oxidative damage relationship. Annals of Medical Research 30, no.4 (2023): 449 - 454. 10.5455/annalsmedres.2022.12.376
MLA Tanbek Kevser,Sandal Suleyman An experimental study: Diabetic nephropathy and oxidative damage relationship. Annals of Medical Research, vol.30, no.4, 2023, ss.449 - 454. 10.5455/annalsmedres.2022.12.376
AMA Tanbek K,Sandal S An experimental study: Diabetic nephropathy and oxidative damage relationship. Annals of Medical Research. 2023; 30(4): 449 - 454. 10.5455/annalsmedres.2022.12.376
Vancouver Tanbek K,Sandal S An experimental study: Diabetic nephropathy and oxidative damage relationship. Annals of Medical Research. 2023; 30(4): 449 - 454. 10.5455/annalsmedres.2022.12.376
IEEE Tanbek K,Sandal S "An experimental study: Diabetic nephropathy and oxidative damage relationship." Annals of Medical Research, 30, ss.449 - 454, 2023. 10.5455/annalsmedres.2022.12.376
ISNAD Tanbek, Kevser - Sandal, Suleyman. "An experimental study: Diabetic nephropathy and oxidative damage relationship". Annals of Medical Research 30/4 (2023), 449-454. https://doi.org/10.5455/annalsmedres.2022.12.376