Yıl: 2022 Cilt: 29 Sayı: 12 Sayfa Aralığı: 1348 - 1353 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2022.04.118 İndeks Tarihi: 03-05-2023

The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease

Öz:
Aim: We intended to assess the hepatoprotective effects of phenethyl isothiocyanate (PEITC) against oxidative liver injury induced by a high-fat diet (HFD) and streptozotocin (STZ) diabetes through the Nuclear Factor E2-Related Factor 2 (Nrf2) and Sirtuin 1 (SIRT1) pathways in rats. Materials and Methods: Thirty male Wistar Albino rats were separated into three groups: the control group, the second group (HFD+STZ) fed HFD and injected with STZ (35mg/kg b.w.), and the third group (HFD+ STZ+PEITC) fed an HFD, injected with STZ (35mg/kg b.w.), and given PEITC (40mg/kg b.w. by oral gavage). Feeding with HFD and PEITC was given for two weeks and continued one more week following STZ. Serum ALT and lipids levels, antioxidant enzyme activities, MDA, GST, SIRT1, NF-κβ, and Nrf2 levels were measured. Liver histological changes were detected. Results: In comparison with the control group, in the HFD+STZ group, serum HDL levels, activities of hepatic antioxidant enzymes, Nrf2 activity, levels of GST, SIRT1, and NF-κβ reduced and besides, serum ALT, TG, TC, LDL / VLDL, and hepatic MDA levels increased (p <0.05). PEITC pre-administration led to improvement in these changes made by HFD-STZ (p <0.05). Conclusion: Our data presented that PEITC ameliorated hepatic injury and serum lipid profile induced by HFD and STZ via the activation of Nrf2 and SIRT1 pathways. We can suggest that PEITC could be a possible candidate agent against liver diseases.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta. 2014 Sep;1840(9):2709-29. DOI: 10.1016/j.bbagen.2014.05.017.
  • 2. Aboulmagd YM, El-Bahy AAZ, Menze ET, Azab SS, El- Demerdash E. Role of linagliptin in preventing the pathological progression of hepatic fibrosis in high fat diet and streptozotocininduced diabetic obese rats. Eur J Pharmacol. 2020; 881:173224. DOI: 10.1016/j.ejphar.2020.173224.
  • 3. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145- 71. DOI: 10.1146/annurev-pathol-121808-1021.
  • 4. Lee J, Park JS, Roh YS. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease. Arch Pharm Res. 2019 Nov;42(11):935-946. DOI: 10.1007/s12272-019-01178-1.
  • 5. de Marco R, Locatelli F, Zoppini G, Verlato G, Bonora E, Muggeo M: Cause-specific mortality in type 2 diabetes: The Verona Diabetes Study. Diabetes Care 22:756–761, 1999. DOI: 10.2337/diacare.22.5.756.
  • 6. Alsuliam SM, Albadr NA, Almaiman SA, Al-Khalifah AS, Alkhaldy NS, Alshammari GM. Fenugreek Seed Galactomannan Aqueous and Extract Protects against Diabetic Nephropathy and Liver Damage by Targeting NF-κβ and Keap1/Nrf2 Axis. Toxics. 2022;10(7):362. DOI: 10.3390/toxics10070362.
  • 7. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) Signaling in Oxidative Stress. Free Radic Biol Med. 2009;47:1304-9. DOI: 10.1016/j.freeradbiomed.2009.07.035.
  • 8. Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signalling by natural products-can it alleviates diabetes? Biotechnol Adv. 2018;36(6):1738-67. DOI: 10.1016/j.biotechadv.2017.12.015.
  • 9. Abdelzaher WY, Sayed AH, Ali A, El-Tahawy NFG. Mast Cell Stabilizer Modulates Sirt1/Nrf2/TNF Pathway and Inhibits Oxidative Stress, Inflammation and Apoptosis in Rat Model of Cyclophosphamide Hepatotoxicity. Immunopharmacol Immunotoxicol. 2020; 42:101-9. DOI: 10.1080/08923973.2020.1727499.
  • 10. Ding RB, Bao J, Deng CX. Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci. 2017;13(7):852-67. DOI: 10.7150/ijbs.19370.
  • 11. Ioannides C, Konsue N. A principal mechanism for the cancer chemopreventive activity of phenethyl isothiocyanate is modulation of carcinogen metabolism. Drug Metab Rev. 2015; 47:356- 73. DOI: 10.3109/03602532.2015.1058819.
  • 12. Wang J, Shi K, An N, et al. Direct Inhibition of GSDMD by PEITC Reduces Hepatocyte Pyroptosis and Alleviates Acute Liver Injury in Mice. Front Immunol. 2022; 13:825428. DOI: 10.3389/fimmu.2022.825428.
  • 13. Chuang WT, Liu YT, Huang CS, et al. Benzyl isothiocyanate and phenethyl isothiocyanate inhibit adipogenesis and hepatosteatosis in mice with obesity induced by a highfat diet. J Agric Food Chem. 2019;67(25):7136-46. DOI: 10.1021/acs.jafc.9b02668.
  • 14. Srinivasan K, Viswanad B, Asrat L, et al. Combination of highfat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52(4):313-20. DOI: 10.1016/j.phrs.2005.05.004.
  • 15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248–54. DOI: 10.1006/abio.1976.9999.
  • 16. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1):271–8. DOI: 10.1016/0003-2697(78)90342-1.
  • 17. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988; 34:497-500.
  • 18. Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105: 121-6. DOI: 10.1016/s0076-6879(84)05016-3.
  • 19. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967; 70:158-69.
  • 20. Liu L, Lv G, Ning C, et al. Therapeutic effects of 1,25- dihydroxyvitamin D3 on diabetes-induced liver complications in a rat model. Exp Ther Med. 2016;11(6):2284-92. DOI: 10.3892/etm.2016.3242.
  • 21. Palsamy P, Sivakumar S, Subramanian S. Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chem Biol Interact. 2010;186(2):200-10. DOI: 10.1016/j.cbi.2010.03.028.
  • 22. Afrin R, Arumugam S, Wahed MI, et al. Attenuation of Endoplasmic Reticulum Stress-Mediated Liver Damage by Mulberry Leaf Diet in Streptozotocin-Induced Diabetic Rats. Am J Chin Med. 2016;44(1):87-101. DOI: 10.1142/S0192415X16500063.
  • 23. Wong CA, Araneta MRG, Barrett-Connor E, et al. Probable NAFLD, by ALT levels, and diabetes among Filipino- American Women. Diabetes Res Clin Pract. 2008; 79:133-40. DOI: 10.1016/j.diabres.2007.07.012.
  • 24. Kurek JM, Król E, Krejpcio Z. Steviol glycosides supplementation affects lipid metabolism in high-fat fed STZ-induced diabetic rats. Nutrients 2020; 13: 112. DOI: 10.3390/nu13010112.
  • 25. Dwivedi DK, Jena GB. LRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn-Schmiedeberg’s Arch Pharmacol. 2020; 393:705-16. DOI: 10.1007/s00210-019- 01773-5.
  • 26. Gwon MH, Im YS, Seo AR, et al. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020;12:1-17. DOI: 10.3390/nu12123657.
  • 27. Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm J. 2016 Sep;24(5):547-553. DOI: 10.1016/j.jsps.2015.03.013.
  • 28. Masarone M, Rosato V, Dallio M, et al. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid Med Cell Longev. 2018;2018:9547613. DOI: 10.1155/2018/9547613.
  • 29. Videla LA, Rodrigo R, Araya J, et al. Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease. Free Radic Biol Med. 2004;37(9):1499-507. DOI: 10.1016/j.freeradbiomed.2004.06.033.
  • 30. Jadeja RN, Upadhyay KK, Devkar RV, Khurana S. Naturally occurring Nrf2 activators: Potential in treatment of liver injury. Oxid Med Cell Longev. 2016; 2016:1-13. DOI: 10.1155/2016/3453926.
  • 31. Naidu SD, Suzuki T, Yamamoto M, et al. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res. 2018; 62:1-9. DOI: 10.1002/mnfr.201700908.
  • 32. Cheung KL, Kong AN. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J. 2010;12(1):87-97. DOI: 10.1208/s12248-009-9162-8.
  • 33. Anapali M, Kaya-Dagistanli F, Akdemir AS, et al. Combined resveratrol and vitamin D treatment ameliorate inflammationrelated liver fibrosis, ER stress, and apoptosis in a high-fructose diet/streptozotocin-induced T2DM model. Histochem Cell Biol. 2022;158(3):279-96. DOI: 10.1007/s00418-022-02131-y.
  • 34. Seo KW, Kim JG, Park M, et al. Effects of phenethylisothiocyanate on the expression of glutathione S-transferases and hepatotoxicity induced by acetaminophen. Xenobiotica 2000;30:535- 45. DOI: 10.1080/004982500237532.
  • 35. Cover C, Liu J, Farhood A, et al. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol. 2006; 216:98-107. DOI: 10.1016/j.taap.2006.04.010.
  • 36. Corbi G, Conti V, Russomanno G, et al. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol. 2013; 4:324. DOI: 10.3389/fphys.2013.00324.
  • 37. Fu Y, Kinter M, Hudson J, et al. Aging promotes sirtuin 3- dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol. 2016; 68:1887-98. DOI: 10.1002/art.39618.
  • 38. Fiorino E, Giudici M, Ferrari A, et al. The sirtuin class of histone deacetylases: regulation and roles in lipid metabolism. IUBMB Life 2014;66:89-99. DOI: 10.1002/iub.1246.
  • 39. Yang H, Zhang W, Pan H, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κα activity. PLoS One 2012;7:46364. DOI: 10.1371/journal.pone.0046364.
  • 40. Vega Joubert MB, Ingaramo P, Oliva ME, et al. Salvia hispanica L. (chia) seed ameliorates liver injury and oxidative stress by modulating NrF2 and NFκβ expression in sucrose-rich diet-fed rats. Food Funct. 2022;13(13):7333-45. DOI: 10.1039/d2fo00642a.
  • 41. Wang X, Govind S, Sajankila SP, et al. Phenethyl isothiocyanate sensitizes human cervical cancer cells to apoptosis induced by cisplatin. Mol Nutr Food Res. 2011; 55:1572-81. DOI: 10.1002/mnfr.201000560.
APA ATICI B, Uyumlu A, ÇETİN A (2022). The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. , 1348 - 1353. 10.5455/annalsmedres.2022.04.118
Chicago ATICI BUĞRAHAN,Uyumlu Ayşe Burçin,ÇETİN Aslı The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. (2022): 1348 - 1353. 10.5455/annalsmedres.2022.04.118
MLA ATICI BUĞRAHAN,Uyumlu Ayşe Burçin,ÇETİN Aslı The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. , 2022, ss.1348 - 1353. 10.5455/annalsmedres.2022.04.118
AMA ATICI B,Uyumlu A,ÇETİN A The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. . 2022; 1348 - 1353. 10.5455/annalsmedres.2022.04.118
Vancouver ATICI B,Uyumlu A,ÇETİN A The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. . 2022; 1348 - 1353. 10.5455/annalsmedres.2022.04.118
IEEE ATICI B,Uyumlu A,ÇETİN A "The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease." , ss.1348 - 1353, 2022. 10.5455/annalsmedres.2022.04.118
ISNAD ATICI, BUĞRAHAN vd. "The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease". (2022), 1348-1353. https://doi.org/10.5455/annalsmedres.2022.04.118
APA ATICI B, Uyumlu A, ÇETİN A (2022). The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. Annals of Medical Research, 29(12), 1348 - 1353. 10.5455/annalsmedres.2022.04.118
Chicago ATICI BUĞRAHAN,Uyumlu Ayşe Burçin,ÇETİN Aslı The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. Annals of Medical Research 29, no.12 (2022): 1348 - 1353. 10.5455/annalsmedres.2022.04.118
MLA ATICI BUĞRAHAN,Uyumlu Ayşe Burçin,ÇETİN Aslı The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. Annals of Medical Research, vol.29, no.12, 2022, ss.1348 - 1353. 10.5455/annalsmedres.2022.04.118
AMA ATICI B,Uyumlu A,ÇETİN A The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. Annals of Medical Research. 2022; 29(12): 1348 - 1353. 10.5455/annalsmedres.2022.04.118
Vancouver ATICI B,Uyumlu A,ÇETİN A The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease. Annals of Medical Research. 2022; 29(12): 1348 - 1353. 10.5455/annalsmedres.2022.04.118
IEEE ATICI B,Uyumlu A,ÇETİN A "The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease." Annals of Medical Research, 29, ss.1348 - 1353, 2022. 10.5455/annalsmedres.2022.04.118
ISNAD ATICI, BUĞRAHAN vd. "The role of Nrf2/SIRT1 pathway in the hepatoprotective effect of PEITC against HFD/STZ-induced diabetic liver disease". Annals of Medical Research 29/12 (2022), 1348-1353. https://doi.org/10.5455/annalsmedres.2022.04.118