Yıl: 2023 Cilt: 30 Sayı: 4 Sayfa Aralığı: 508 - 512 Metin Dili: İngilizce DOI: 10.5455/annalsmedres.2023.02.062 İndeks Tarihi: 03-05-2023

Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines

Öz:
Aim: Nateglinide, an oral anti-diabetic medication used to treat type 2 diabetes, activates ATP-dependent potassium channels in pancreatic beta cells and induces insulin secretion. Numerous antidiabetic medicines, particularly metformin, are known to drastically reduce the viability of cancer cells. This study examined the effects of nateglinide on the DNA and viability of human ovarian (A2780), prostate (LNCaP), and colon (Caco-2) cancer cells. Materials and Methods: Initially in the study, 1, 10, 100, and 1000 µM doses of nateglinide were administered for 24 hours to A2780, LNCaP, and Caco-2 cells. The 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to measure cell viability. Using Graphpad Prism 8, the inhibitory logarithmic concentration values (LogIC50) of nateglinide in A2780, LNCaP, and Caco-2 cells were computed based on the results of the MTT experiment. These doses were applied to A2780, LNCaP, and Caco-2 cells for the Comet assay. The Bonferroni-corrected Mann–Whitney U test was used to compare groups, and a value of p<0.05 was considered statistically significant. Results: In A2780 and LNCaP cell lines, only 1000 µM nateglinide concentration de creased cell viability (p<0.05), whereas in Caco-2 cells, all concentrations except 1 µM reduced cell viability (p<0.05). The Comet assay indicated that nateglinide produced DNA damage by increasing the tail lengths and tail moments of A2780, LNCaP, and Caco-2 cells (p<0.05) and reducing the head diameters (p<0.05). Conclusion: According to the findings of this study, nateglinide has cytotoxic effects on human ovarian, prostate and colon cancer cell lines and may possess anticancer properties.
Anahtar Kelime: Nateglinide Ovarian cancer Prostate cancer Colon cancer

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Brandt K, Kruszynski R, Bartczak TJ, et al. AIDS-related lym phoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, poten tially capable of ion-regulated DNA cleavage action. J Inorganica Chimica Acta. 2001;322(1-2):138-44.
  • 2. All cancers. https://gco.iarc.fr/today/data/factsheets/cancers/39- All-cancers-fact-sheet.pdf. 2020.
  • 3. Ölüm ve Ölüm Nedeni İstatistikleri. https://data.tuik.gov.tr/ Bulten/Index?p=Olum-ve-Olum-Nedeni-Istatistikleri-2019- 33710;2019.
  • 4. Gurung A, Hung T, Morin J, et al. Molecular abnormalities in ovarian carcinoma: clinical, morphological and therapeutic cor relates. 2013;62(1):59-70.
  • 5. Agarwal R, Kaye SB. Ovarian cancer: strategies for over coming resistance to chemotherapy. J Nature Reviews Cancer. 2003;3(7):502-16.
  • 6. Verma M, Patel P, Verma M. Biomarkers in prostate cancer epidemiology. J Cancers. 2011;3(4):3773-98.
  • 7. Pollock P, Ludgate A, Wassersug R. In 2124, half of all men can count on developing prostate cancer. J Current oncology. 2015;22(1):10-2.
  • 8. Jernal A, Siegel R, Ward E, et al. Cancer statistics, 2002. 2002;52(1):23-47.
  • 9. Karataş MO, Tekin S, Alici B, et al. Cytotoxic effects of coumarin substituted benzimidazolium salts against human prostate and ovarian cancer cells. J Journal of Chemical Sci ences. 2019;131(8):1-12.
  • 10. Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 medi ates glucose homeostasis in liver and therapeutic effects of met formin. Science. 2005;310(5754):1642-6.
  • 11. Sui X, Xu Y, Wang X, et al. Metformin: a novel but controversial drug in cancer prevention and treatment. 2015;12(11):3783-91.
  • 12. Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. 2009;460(7251):103-7.
  • 13. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. Metformin improves healthspan and lifespan in mice. 2013;4(1):1-9.
  • 14. DeCensi A, Puntoni M, Goodwin P, et al. Metformin and Can cer Risk in Diabetic Patients: A Systematic Review and Meta analysisMetformin and Cancer Incidence in Diabetic Patients. 2010;3(11):1451-61.
  • 15. Sreenivasan Snima K, Pillai P, Mary Cherian A, et al. Anti diabetic drug metformin: challenges and perspectives for cancer therapy. 2014;14(8):727-36.
  • 16. Halas CJ. Nateglinide. American journal of health-system phar macy : AJHP : official journal of the American Society of Health System Pharmacists. 2001;58(13):1200-5.
  • 17. Campbell I. Nateglinide–current and future role in the treatment of patients with type 2 diabetes mellitus. J International journal of clinical practice. 2005;59(10):1218-28.
  • 18. Ball AJ, Flatt PR, McClenaghan NH. Acute and long-term ef fects of nateglinide on insulin secretory pathways. J British jour nal of pharmacology. 2004;142(2):367.
  • 19. Suzuki N, Niikura R, Ihara S, et al. Alpha-Blockers As Col orectal Cancer Chemopreventive: Findings from a Case–Control Study, Human Cell Cultures, and In Vivo Preclinical Testing. 2019;12(3):185-94.
  • 20. Tektemur A, Ozaydin S, Etem Onalan E, et al. TRPM2 medi ates distruption of autophagy machinery and correlates with the grade level in prostate cancer. 2019;145(5):1297-311.
  • 21. Keser S, Keser F, Kaygili O, et al. Phytochemical compounds and antiradical, antimicrobial, and cytotoxic activities of the extracts from Hypericum scabrum L. Flowers. 2020;34(5):714-9.
  • 22. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Journal of immunological methods. 1983;65(1-2):55-63.
  • 23. Tekin S, Sandal S, Colak CJMS. Effects of Apelin-13 on human prostate cancer lines [İnsan Prostat Kanseri Hücre Serilerinde Apelin-13’ün Etkileri]. 2014;303:1427-418143.
  • 24. Koran K, Tekin Ç, Çalışkan E, et al. Synthesis, structural and thermal characterizations and in vitro cytotoxic activities of new cyclotriphosphazene derivatives. 2017;192(9):1002-11.
  • 25. Karataş MO, Tekin S, Alici B, et al. Cytotoxic effects of coumarin substituted benzimidazolium salts against human prostate and ovarian cancer cells. 2019;131(8):1-12.
  • 26. Klaude M, Eriksson S, Nygren J, et al. The comet assay: mech anisms and technical considerations. 1996;363(2):89-96.
  • 27. Devlin H-L, Mack PC, Burich RA, et al. Impairment of the DNA repair and growth arrest pathways by p53R2 silencing enhances DNA damage–induced apoptosis in a p53-dependent manner in prostate cancer cells. 2008;6(5):808-18.
  • 28. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. 2015;136(5):E359-E86.
  • 29. Yin W, Wang J, Jiang L, et al. Cancer and stem cells. 2021;246(16):1791-801.
  • 30. Mun EJ, Babiker HM, Weinberg U, et al. Tumor-Treating Fields: A Fourth Modality in Cancer TreatmentTumor-Treating Fields in Cancer Treatment. 2018;24(2):266-75.
  • 31. Fearon E, Bommer G. Progressing from gene mutations to can cer. 2008.
  • 32. Berne RM, Levy MN, Koeppen BM. Berne & levy physiology: Elsevier Brasil; 2008.
  • 33. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of sys temic cancer treatment. J International journal of oncology. 2019;54(2):407-19.
  • 34. Greer JA, Amoyal N, Nisotel L, et al. A systematic review of adherence to oral antineoplastic therapies. 2016;21(3):354-76.
  • 35. Wojciechowska J, Krajewski W, Bolanowski M, et al. Diabetes and cancer: a review of current knowledge. 2016;124(05):263-75.
  • 36. Dąbrowski M. Diabetes, antidiabetic medications and cancer risk in type 2 diabetes: focus on SGLT-2 inhibitors. J International Journal of Molecular Sciences. 2021;22(4):1680.
  • 37. Papanas N, Maltezos E. Oral antidiabetic agents: anti atherosclerotic properties beyond glucose lowering? J Current pharmaceutical design. 2009;15(27):3179-92.
  • 38. Wang J, Yannie PJ, Ghosh SS, et al. Regulation of interleukin-1 beta secretion from macrophages via modulation of potassium ion (K+) channel activity. 2019;593(11):1166-78.
APA öz s, ŞEKERCİ G, Yüksel F, Tekin S (2023). Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. , 508 - 512. 10.5455/annalsmedres.2023.02.062
Chicago öz samet,ŞEKERCİ Güldeniz,Yüksel Furkan,Tekin Suat Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. (2023): 508 - 512. 10.5455/annalsmedres.2023.02.062
MLA öz samet,ŞEKERCİ Güldeniz,Yüksel Furkan,Tekin Suat Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. , 2023, ss.508 - 512. 10.5455/annalsmedres.2023.02.062
AMA öz s,ŞEKERCİ G,Yüksel F,Tekin S Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. . 2023; 508 - 512. 10.5455/annalsmedres.2023.02.062
Vancouver öz s,ŞEKERCİ G,Yüksel F,Tekin S Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. . 2023; 508 - 512. 10.5455/annalsmedres.2023.02.062
IEEE öz s,ŞEKERCİ G,Yüksel F,Tekin S "Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines." , ss.508 - 512, 2023. 10.5455/annalsmedres.2023.02.062
ISNAD öz, samet vd. "Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines". (2023), 508-512. https://doi.org/10.5455/annalsmedres.2023.02.062
APA öz s, ŞEKERCİ G, Yüksel F, Tekin S (2023). Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. Annals of Medical Research, 30(4), 508 - 512. 10.5455/annalsmedres.2023.02.062
Chicago öz samet,ŞEKERCİ Güldeniz,Yüksel Furkan,Tekin Suat Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. Annals of Medical Research 30, no.4 (2023): 508 - 512. 10.5455/annalsmedres.2023.02.062
MLA öz samet,ŞEKERCİ Güldeniz,Yüksel Furkan,Tekin Suat Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. Annals of Medical Research, vol.30, no.4, 2023, ss.508 - 512. 10.5455/annalsmedres.2023.02.062
AMA öz s,ŞEKERCİ G,Yüksel F,Tekin S Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. Annals of Medical Research. 2023; 30(4): 508 - 512. 10.5455/annalsmedres.2023.02.062
Vancouver öz s,ŞEKERCİ G,Yüksel F,Tekin S Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines. Annals of Medical Research. 2023; 30(4): 508 - 512. 10.5455/annalsmedres.2023.02.062
IEEE öz s,ŞEKERCİ G,Yüksel F,Tekin S "Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines." Annals of Medical Research, 30, ss.508 - 512, 2023. 10.5455/annalsmedres.2023.02.062
ISNAD öz, samet vd. "Cytotoxic and genotoxic effects of nateglinide on human ovarian, prostate, and colon cancer cell lines". Annals of Medical Research 30/4 (2023), 508-512. https://doi.org/10.5455/annalsmedres.2023.02.062