Yıl: 2023 Cilt: 26 Sayı: 2 Sayfa Aralığı: 245 - 253 Metin Dili: İngilizce DOI: 10.18016/ksutarimdoga.vi.992039 İndeks Tarihi: 03-05-2023

Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization

Öz:
In this study, aimed to investigate the effect of bacterial fertilizer: A (Bacillus spp., Trichoderma spp. ), B (Azorhizobium, Azotobacter and Azospirillum) and C (Azotobacter spp., Bacillus spp. and Pseudomonas putida) on soil carbon mineralization. On the application of A, B and C bacterial fertilizers on the sterilized control soil, whose initial carbon mineralization rates is 1.1%, mineralization rates of 5.12%, 3.54%, and 10.78% were respectively recorded. According to these results, it was observed that the application of bacterial fertilizer increased the carbon mineralization rate of the sterilized control soil by 365.45%, 221.82% and 880%, respectively. A carbon mineralization rate of 7.03%, 6.15% and 12.95% was recorded in the non-sterilized soil sample whose initial carbon mineralization rate is 5.1%, thereby increasing the mineralization rate by 25.31%, 9.63% and 130.84%. The application of the bacterial fertilizer to the soil was found to increase the soil carbon mineralization rate. It is recommended to incorporate bacterial fertilizers with CO2- sequestering materials, such as biochar, to mitigate the fluctuations in the natural balance due to carbon release.
Anahtar Kelime:

Farklı Bakteriyel Gübrelerin Toprak Karbon Mineralizasyonu Üzerine Etkisi

Öz:
Bu çalışmada, farklı içerikteki A (Bacillus spp., Trichoderma spp. ), B (Azorhizobium, Azotobacter ve Azospirillum) ve C (Azotobacter spp., Bacillus spp. ve Pseudomonas putida) bakteriyel gübrelerinin toprak karbon mineralizasyonu üzerindeki etkisini araştırmayı amaçlandı. Karbon mineralizasyon oranı %1,1 olan steril edilmiş kontrol toprağına A, B ve C bakteri gübreleri uygulanmış ve karbon mineralizasyon oranları sırasıyla %5,12, %3,54 ve %10,78 olarak ölçülmüştür. Bu sonuçlara göre bakteri gübresi uygulamanın steril edilmiş kontrol toprağının karbon mineralizasyon oranını sırasıyla %365,45, %221,82 ve %880 oranında arttığı görülmüştür. Karbon mineralizasyon oranı %5,1 olan steril edilmemiş toprak örneğinde de A, B ve C bakteri gübre uygulamasının karbon mineralizasyon oranları sırasıyla %7,03, %6,15 ve %2,95 olarak ölçülmüş olup bakteri gübre uygulamasının karbon mineralizasyon oranını sırasıyla %25,31, %9,63 ve %130,84 arttırdığı belirlenmiştir. Çalışmanın sonunda bakteriyel gübre uygulamasının toprak örneklerinde karbon mineralleşmesini artırdığı sonucuna varılmıştır. Bu artışın doğal dengeyi bozmasını önlemek için bakteri gübreleri uygulanırken biochar gibi karbon bağlayıcıların da verilmesinin uygun olacağı düşünülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmad M., Zahir Z.A., Asghar H.N., & Arshad M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of Microbiology 62, 1321–1330.
  • Alef K., & Nannipieri P. (1995). Methods in applied soil microbiology and biochemistry. (Academic press, London).
  • Allison L, & Moodie C.D. (1965). Carbonate. Methods of soil Analysis, Part 2, Agronomy, 1379–1400. (American society of Agronomy Inc, Madison).
  • Arshad M., & Frankenberger W.T. (1997). Plant Growth-Regulating Substances in the Rhizosphere: Microbial Production and Functions. In D. L. Sparks [ed.], Advances in Agronomy, 45–151. Academic Press.
  • Ascari J.P., Araújo D.V., Mendes I.R., Dallacort R., & Matsumoto L.S. (2019). Biological fertılızer and cover plants on soil attrıbutes and maize yield. Revista Caatinga 32, 709–718.
  • Belo E.S., Terra F.D., Rotta L.R., Vilela L.A., Paulino H.B., de Sousa E.D., Vilela L.A., & Carneiro M.A. (2012). Decomposıção de dıferentes resíduos orgânıcos e efeıto na atıvıdade mıcrobıana em um Latossolo Vermelho de Cerrado. Global Science and Technology 5(3), 107–116.
  • Bouyoucos G.J. (1951). A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils. Agronomy Journal 43, 434–438.
  • Bremmer J. (1965). Total nitrogen. Methods of soil analysis, Agronomy, 1149–1178. American society of Agronomy Inc., Madison, Wisconsin, U.S.A.
  • Carini P., Marsden P.J., Leff J.W., Morgan E.E., Strickland M.S., & Fierer N. (2016). Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology 2, 16242.
  • Davarpanah S., Tehranifar A., Davarynejad G., Abadía J., & Khorasani R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae 210, 57– 64.
  • Demiralay I. (1993). Toprak fiziksel analizleri. Ataturk üniversitesi Ziraat Fakültesi Yayınları, Erzurum
  • Ekici I., Sani Z. K., Darici C., & Dincer S. (2022). Comparison of C and N mineralization and metagenome analysis of rhizosphere soils belonging to different Colchicum L. species. Trakya University Journal of Natural Sciences 23 (1), 1-13.
  • Francis I., Holsters M., & Vereecke D. (2010). The Gram-positive side of plant–microbe interactions. Environmental Microbiology 12, 1–12.
  • Franzluebbers A.J., Hons F.M., & Zuberer D.A. (1995). Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil and Tillage Research 34, 41–60.
  • Jackson M.L. (1958). Soil chemical analysis. Prentice Hall Inc., New Jersey, U.S.A.
  • Kourgialas N.N., Karatzas G.P., & Koubouris G.C. (2017). A GIS policy approach for assessing the effect of fertilizers on the quality of drinking and irrigation water and wellhead protection zones (Crete, Greece). Journal of Environmental Management 189, 150–159.
  • Liu R., & Lal R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment 514, 131–139.
  • Medeiros M.B., & Lopes J. (2006). Biofertilizantes líquidos e sustentabilidade agrícola [Liquid biofertilizers and agricultural sustainability]. Bahia Agrícola 7, 24-26.
  • Maestre F.T., Delgado-Baquerizo M., Jeffries T.C., Eldridge D.J., Ochoa V., Gozalo B., Quero J.L. et al (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences 112, 15684–15689.
  • Mahanty T., Bhattacharjee S., Goswami M., Bhattacharyya P., Das B., Ghosh A., & Tribedi P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research 24, 3315–3335.
  • Mahdi S.S., Hassan G.I., Samoon S.A., Rather H.A., Dar S.A., & Zehra B. (2010). Bio-fertilizers in organic Agriculture. Journal of Phytology 2(10), 42– 54.
  • Malusa E., Pinzari F., & Canfora L. (2016). Efficacy of biofertilizers: Challenges to improve crop production. Microbial inoculants in sustainable agricultural productivitity. (Springer, New Delhi) 17–40.
  • Mikhak A., Sohrabi A., Kassaee M.Z., & Feizian M. (2017). Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Industrial Crops and Products 95, 444–452.
  • Mohite B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13, 638– 649.
  • Olsen S.R., Cole C.V., Watanabe F.S., & Dean L. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture Circular 939.
  • Prasad M., Srinivasan R., Chaudhary M., & Jat L. (2019). Plant growth promoting Rhizobacteria (PGPR) for sustainable Agriculture: Perspectives and challenges. (PGPR Amelioration in sustainable Agriculture, Woodhead publishing) 127–157.
  • Puri A., Padda K.P., & Chanway C.P. (2016). Evidence of nitrogen fixation and growth promotion in canola (Brassica napus L.) by an endophytic diazotroph Paenibacillus polymyxa P2b-2R. Biology and Fertility of Soils 52, 119–125.
  • Rochette P., Flanagan L.B., & Gregorich E.G. (1999). Separating Soil Respiration into Plant and Soil Components Using Analyses of the Natural Abundance of Carbon-13. Soil Science Society of America Journal 63, 1207–1213.
  • Rokhzadi A., & Toashih V. (2011). Nutrient Uptake and Yield of Chickpea (Cicer arietinum L.) Inoculated with Plant Growthpromoting Rhizobacteria. Australian Journal of Crop Science 5, 44–48.
  • Salehi A., Fallah S., & Sourki A. (2017). Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L. International Agrophysics 31, 103–116.
  • Sarkar D., & Rakshit A. (2020). Carbon mineralization dynamics of gangetic alluvial soil amended with fertilizers and plant growth-promoting microorganisms. Climate Change and Environmental Sustainability 8, 213.
  • Schlesinger W.H., & Andrews J.A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry 48, 7–20.
  • Schlichting E. (1971). P. Duchaufour: Précis de Pédologie, 3e édition. Masson et Cie, Paris 1970. 482 S, 18 × 24 cm, 80 Fig., 23 Abb. (2 Farbtafeln). Brosch. 80 F, kart. 90 F. Zeitschrift für Pflanzenernährung und Bodenkunde 129, 250–251.
  • Shrestha R.K., Lal R., & Rimal B. (2013). Soil carbon fluxes and balances and soil properties of organically amended no-till corn production systems. Geoderma 197, 177–185.
  • Silva R.R., da Silva M.L., Cardoso E.L., de Moreira F.M., Curi N., & Alovisi A.M. (2010). Biomassa e atividade microbiana em solo sob diferentes sistemas de manejo na região fisiográfica Campos das Vertentes - MG. Revista Brasileira de Ciência do Solo 34, 1584–1592.
  • SPSS, (2006). IBM SPSS Statistics 15.0 for Windows. Armonk, NY.
  • Subbarao C., Kartheek G., & Sirisha D. (2013). Slow release of potash fertilizer through polymer coating. International Journal of Applied Science and Engineering 11, 25–30.
  • Tedersoo L. (2017). Correspondence: Analytical flaws in a continental-scale forest soil microbial diversity study. Nature Communications 8, 15572.
  • Tomer S., Suyal D., & Goel R. (2016). Biofertilizers: A timely approach for sustainable Agriculture. Plant- Microbe interaction: An approach to sustainable Agriculture. (Springer Nature, Singapore) pp 375– 395.
  • Treuer R., & Haydel S.E. (2011). Acid-fast staining and Petroff Hausser chamber counting of Mycobacterial cells in liquid suspension. Current protocols in Microbiology. https://doi.org/10.1002/97804717292 59. mc10a06s20
  • Xiang W., Zhao L., Xu X., Qin Y., & Yu G. (2012). Mutual Information Flow between Beneficial Microorganisms and the Roots of Host Plants Determined the Bio-Functions of Biofertilizers. American Journal of Plant Sciences 3, 1115–1120.
  • Yin Z., Shi F., Jiang H., Roberts D.P., Chen S., & Fan B. (2015). Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Canadian journal of microbiology 61, 913–923.
  • Zhang N., Wang D., Liu Y., Li S., Shen Q., & Zhang R. (2014). Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil 374, 689–700.
APA EKİCİ İ, Sani Z, DİNÇER S (2023). Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. , 245 - 253. 10.18016/ksutarimdoga.vi.992039
Chicago EKİCİ İPEK,Sani Zahraddeen Kabir,DİNÇER SADIK Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. (2023): 245 - 253. 10.18016/ksutarimdoga.vi.992039
MLA EKİCİ İPEK,Sani Zahraddeen Kabir,DİNÇER SADIK Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. , 2023, ss.245 - 253. 10.18016/ksutarimdoga.vi.992039
AMA EKİCİ İ,Sani Z,DİNÇER S Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. . 2023; 245 - 253. 10.18016/ksutarimdoga.vi.992039
Vancouver EKİCİ İ,Sani Z,DİNÇER S Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. . 2023; 245 - 253. 10.18016/ksutarimdoga.vi.992039
IEEE EKİCİ İ,Sani Z,DİNÇER S "Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization." , ss.245 - 253, 2023. 10.18016/ksutarimdoga.vi.992039
ISNAD EKİCİ, İPEK vd. "Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization". (2023), 245-253. https://doi.org/10.18016/ksutarimdoga.vi.992039
APA EKİCİ İ, Sani Z, DİNÇER S (2023). Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(2), 245 - 253. 10.18016/ksutarimdoga.vi.992039
Chicago EKİCİ İPEK,Sani Zahraddeen Kabir,DİNÇER SADIK Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 26, no.2 (2023): 245 - 253. 10.18016/ksutarimdoga.vi.992039
MLA EKİCİ İPEK,Sani Zahraddeen Kabir,DİNÇER SADIK Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, vol.26, no.2, 2023, ss.245 - 253. 10.18016/ksutarimdoga.vi.992039
AMA EKİCİ İ,Sani Z,DİNÇER S Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2023; 26(2): 245 - 253. 10.18016/ksutarimdoga.vi.992039
Vancouver EKİCİ İ,Sani Z,DİNÇER S Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi. 2023; 26(2): 245 - 253. 10.18016/ksutarimdoga.vi.992039
IEEE EKİCİ İ,Sani Z,DİNÇER S "Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization." Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26, ss.245 - 253, 2023. 10.18016/ksutarimdoga.vi.992039
ISNAD EKİCİ, İPEK vd. "Effect of Different Bacterial Fertilizers on Soil Carbon Mineralization". Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 26/2 (2023), 245-253. https://doi.org/10.18016/ksutarimdoga.vi.992039