Yıl: 2023 Cilt: 30 Sayı: 1 Sayfa Aralığı: 112 - 119 Metin Dili: Türkçe DOI: 10.5505/vtd.2023.98705 İndeks Tarihi: 04-05-2023

Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü

Öz:
Renal transplantasyon, son evre böbrek yetmezliği görülen hastalarda yaşam kalitesini artıran en etkili tedavi yöntemidir. Organ ve doku fonksiyonlarının daha iyi anlaşılması, yeni cerrahi tekniklerinin geliştirilmesi, her bir hasta için uygulanan immünsupresif ve antimikrobiyal tedavi protokolleri transplantasyonun başarısını her geçen gün artırmaktadır. mikroRNA’lar (miR) transkripsiyon sonrası gen ekspresyonunu düzenleyen küçük endojen RNA’lardır. Son yıllarda miR’ların kronik böbrek hastaları, hemodiyaliz hastaları ve transplantasyon sonrası akut rejeksiyon görülen hastalardaki rolü dikkate alındığında nefroloji alanında miR’lar önemli olarak değerlendirilmektedir. miR’ların transplantasyon öncesi ve sonrası değişen ekspresyon seviyeleri ile miR’lar akut rejeksiyonunun tespiti ve greft hasarının en aza indirilmesinde önemli bir biyobelirteç haline gelmiştir. Biyopsi örneklerinin yanı sıra serum, plazma ve idrar gibi diğer vücut sıvılarından da izole edilebilmektedir. Serum ve idrardan izole edilen miR’ların immünolojik mekanizmalarla ilişkisinin aydınlatılması yeni tedavi yöntemlerinin geliştirilmesine ve greft fonksiyonunun daha detaylı incelenmesine olanak sağlayacaktır. Bu çalışmada renal transplantasyonla ilişkili miR’ları derlemeyi amaçladık.
Anahtar Kelime:

The Role of MicroRNAs in Monitoring Post Renal Transplantation Graft Functions

Öz:
Renal transplantation is the most effective treatment method that improves the quality of life of patients with end stage renal disease. Better understanding of organ and tissue functions, development of new surgical techniques, immunosuppressive and antimicrobial treatment protocols performed for each patient increase the achievement of transplantation day by day. MicroRNAs (miRs) are small endogenous RNAs that regulate post-transcriptional gene expression. In recent years, the role of miRs in nephrology in chronic kidney patients, hemodialysis patients and patients with acute rejection after transplantation is considered as significant. miRs have become an important biomarker in detecting acute rejection and minimizing graft damage with varying expression levels of miRs before and after transplantation. In addition to biopsy specimens, it can also be isolated from other body fluids such as serum, plasma and urine. Elucidating of relationship of immunological mechanisms and miRs isolated from serum and urine may allow the development of new treatment methods and more detailed examination of the graft function. In this study, we aim to explain miRs which related renal transplantation.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Meier-Kriesche HU, Ojo AO, Port FK, Arndorfer JA, Cibrik DM, Kaplan B. Survival improvement among patients with end-stage renal disease: trends over time for transplant recipients and wait-listed patients. J Am Soc Nephrol 2001;12(6):1293-1296.
  • 2. Gupta G, Womer KL. Profile of belatacept and its potential role in prevention of graft rejection following renal transplantation. Drug Des Devel Ther 2010;4:375-382.
  • 3. Bruneau S, Woda CB, Daly KP, Boneschansker L, Jain NG, Kochupurakkal N, et al. Key Features of the Intragraft Microenvironment that Determine Long-Term Survival Following Transplantation. Front Immunol 2012;3:54.
  • 4. Contreras AG, Briscoe DM. Every allograft needs a silver lining. J Clin Invest 2007;117(12):3645-3648.
  • 5. Reinders ME, Rabelink TJ, Briscoe DM. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol 2006;17(4):932-942.
  • 6. Long DA, Norman JT, Fine LG. Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 2012;8(4):244-250.
  • 7. Rosen S, Stillman IE. Acute tubular necrosis is a syndrome of physiologic and pathologic dissociation. J Am Soc Nephrol 2008;19(5):871-875.
  • 8. Lim WH, McDonald SP, Russ GR, Chapman JR, Ma MK, Pleass H, et al. Association Between Delayed Graft Function and Graft Loss in Donation After Cardiac Death Kidney Transplants-A Paired Kidney Registry Analysis. Transplantation 2017;101(6):1139-1143.
  • 9. Ledeganck KJ, Gielis EM, Abramowicz D, Stenvinkel P, Shiels PG, Van Craenenbroeck AH. MicroRNAs in AKI and Kidney Transplantation. Clin J Am Soc Nephrol 2019;14(3):454-468.
  • 10. Spiegel JC, Lorenzen JM, Thum T. Role of microRNAs in immunity and organ transplantation. Expert Rev Mol Med 2011;13:e37.
  • 11. Metzinger-Le Meuth V, Fourdinier O, Charnaux N, Massy ZA, Metzinger L. The expanding roles of microRNAs in kidney pathophysiology. Nephrol Dial Transplant 2019;34(1):7-15.
  • 12. Anglicheau D, Sharma VK, Ding R, Hummel A, Snopkowski C, Dadhania D, et al. MicroRNA expression profiles predictive of human renal allograft status. Proc Natl Acad Sci USA 2009;106(13):5330-5335.
  • 13. Wilflingseder J, Regele H, Perco P, Kainz A, Soleiman A, Muhlbacher F, et al. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation 2013;95(6):835-841.
  • 14. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009;10(2):126-139.
  • 15. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23(20):4051-4060.
  • 16. Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2010;11(7):537-561.
  • 17. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007;129(7):1401-1414.
  • 18. Gupta SK, Bang C, Thum T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 2010;3(5):484-488.
  • 19. Kumarswamy R, Anker SD, Thum T. MicroRNAs as circulating biomarkers for heart failure: questions about MiR-423-5p. Circ Res 2010;106(9):e8; author reply e9.
  • 20. Lorenzen JM, Volkmann I, Fiedl er J, Schmidt M, Scheffner I, Haller H, et al. Urinary miR- 210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant 2011;11(10):2221-2227.
  • 21. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 2004;32(22):e188.
  • 22. Soltaninejad E, Nicknam MH, Nafar M, Ahmadpoor P, Pourrezagholi F, Sharbafi MH, et al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection. Transpl Immunol 2015;33(1):1-6.
  • 23. Oghumu S, Bracewell A, Nori U, Maclean KH, Balada-Lasat JM, Brodsky S, et al. Acute pyelonephritis in renal allografts: a new role for microRNAs? Transplantation 2014;97(5):559- 568.
  • 24. Vitalone MJ, Sigdel TK, Salomonis N, Sarwal RD, Hsieh SC, Sarwal MM. Transcriptional Perturbations in Graft Rejection. Transplantation 2015;99(9):1882-1893.
  • 25. Rascio F, Pontrelli P, Accetturo M, Oranger A, Gigante M, Castellano G, et al. A type I interferon signature characterizes chronic antibody-mediated rejection in kidney transplantation. J Pathol 2015;237(1):72-84.
  • 26. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, et al. Regulation of the germinal center response by microRNA-155. Science 2007;316(5824):604-608.
  • 27. O'Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010;33(4):607-619.
  • 28. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007;316(5824):608-611.
  • 29. Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol 2010;40(1):225-231.
  • 30. D'Elios MM, Josien R, Manghetti M, Amedei A, de Carli M, Cuturi MC, et al. Predominant Th1 cell infiltration in acute rejection episodes of human kidney grafts. Kidney Int 1997;51(6):1876-1884.
  • 31. Shan J, Feng L, Luo L, Wu W, Li C, Li S, et al. MicroRNAs: potential biomarker in organ transplantation. Transpl Immunol 2011;24(4):210-215.
  • 32. Matesic D, Valujskikh A, Pearlman E, Higgins AW, Gilliam AC, Heeger PS. Type 2 immune deviation has differential effects on alloreactive CD4+ and CD8+ T cells. J Immunol 1998;161(10):5236-5244.
  • 33. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, et al. Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 2008;205(9):1983- 1991.
  • 34. Liston A, Lu LF, O'Carroll D, Tarakhovsky A, Rudensky AY. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J Exp Med 2008;205(9):1993-2004.
  • 35. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, et al. A role for Dicer in immune regulation. J Exp Med 2006;203(11):2519-2527.
  • 36. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009;30(1):80-91.
  • 37. Misra MK, Pandey SK, Kapoor R, Sharma RK, Agrawal S. Genetic variants of MicroRNArelated genes in susceptibility and prognosis of end-stage renal disease and renal allograft outcome among north Indians. Pharmacogenet Genomics 2014;24(9):442-450.
  • 38. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, et al. Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 2010;142(6):914-929.
  • 39. Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, et al. MicroRNA-146a in Human and Experimental Ischemic AKI: CXCL8-Dependent Mechanism of Action. J Am Soc Nephrol 2017;28(2):479- 493.
  • 40. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005;6(8):R71.
  • 41. Milhoransa P, Montanari CC, Montenegro R, Manfro RC. Micro RNA 146a-5p expression in Kidney transplant recipients with delayed graft function. J Bras Nefrol 2019;41(2):242-251.
  • 42. Heidt S, Segundo DS, Chadha R, Wood KJ. The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr Opin Organ Transplant 2010;15(4):456-461.
  • 43. Wang H, Fan H, Tao J, Shao Q, Ding Q. MicroRNA-21 silencing prolongs islet allograft survival by inhibiting Th17 cells. Int Immunopharmacol 2019;66:274-281.
  • 44. Agorogiannis EI, Regateiro FS, Howie D, Waldmann H, Cobbold SP. Th17 cells induce a distinct graft rejection response that does not require IL-17A. Am J Transplant 2012;12(4):835-845.
  • 45. Sheedy FJ. Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Front Immunol 2015;6:19.
  • 46. Wang S, Wan X, Ruan Q. The MicroRNA-21 in Autoimmune Diseases. Int J Mol Sci 2016;17(6).
  • 47. Shi C, Liang Y, Yang J, Xia Y, Chen H, Han H, et al. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One. 2013;8(6):e66814.
  • 48. Khalid U, Newbury LJ, Simpson K, Jenkins RH, Bowen T, Bates L, et al. A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Sci Rep. 2019;9(1):3584.
  • 49. Gniewkiewicz MS, Paszkowska I, Gozdowska J, Czerwinska K, Sadowska-Jakubowicz A, Deborska-Materkowska D, et al. Urinary MicroRNA-21-5p as Potential Biomarker of Interstitial Fibrosis and Tubular Atrophy (IFTA) in Kidney Transplant Recipients. Diagnostics (Basel) 2020;10(2):113.
  • 50. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007;129(1):147-161.
  • 51. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004;303(5654):83-86.
  • 52. Merkerova M, Belickova M, Bruchova H. Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 2008;81(4):304-310.
  • 53. Danger R, Paul C, Giral M, Lavault A, Foucher Y, Degauque N, et al. Expression of miR-142- 5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibodymediated rejection. PLoS One 2013;8(4):e60702.
  • 54. Scian MJ, Maluf DG, David KG, Archer KJ, Suh JL, Wolen AR, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant 2011;11(10):2110-22.
  • 55. Zhou Q, Haupt S, Prots I, Thummler K, Kremmer E, Lipsky PE, et al. miR-142-3p is involved in CD25+ CD4 T cell proliferation by targeting the expression of glycoprotein A repetitions predominant. J Immunol 2013;190(12):6579-6588.
  • 56. MacKenzie TN, Mujumdar N, Banerjee S, Sangwan V, Sarver A, Vickers S, et al. Triptolide induces the expression of miR-142- 3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol Cancer Ther 2013;12(7):1266-1275.
  • 57. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007;129(3):617-631.
  • 58. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008;451(7182):1125-1129.
  • 59. Liu X, Dong C, Jiang Z, Wu WK, Chan MT, Zhang J, et al. MicroRNA-10b downregulation mediates acute rejection of renal allografts by derepressing BCL2L11. Exp Cell Res 2015;333(1):155-163.
  • 60. Zununi S, Ardalan M. MicroRNA and Renal Allograft Monitoring. Nephrourol Mon 2013;5(3):783-786.
APA Anapalı M, balkan e (2023). Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. , 112 - 119. 10.5505/vtd.2023.98705
Chicago Anapalı Merve,balkan eda Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. (2023): 112 - 119. 10.5505/vtd.2023.98705
MLA Anapalı Merve,balkan eda Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. , 2023, ss.112 - 119. 10.5505/vtd.2023.98705
AMA Anapalı M,balkan e Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. . 2023; 112 - 119. 10.5505/vtd.2023.98705
Vancouver Anapalı M,balkan e Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. . 2023; 112 - 119. 10.5505/vtd.2023.98705
IEEE Anapalı M,balkan e "Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü." , ss.112 - 119, 2023. 10.5505/vtd.2023.98705
ISNAD Anapalı, Merve - balkan, eda. "Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü". (2023), 112-119. https://doi.org/10.5505/vtd.2023.98705
APA Anapalı M, balkan e (2023). Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. Van Tıp Dergisi, 30(1), 112 - 119. 10.5505/vtd.2023.98705
Chicago Anapalı Merve,balkan eda Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. Van Tıp Dergisi 30, no.1 (2023): 112 - 119. 10.5505/vtd.2023.98705
MLA Anapalı Merve,balkan eda Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. Van Tıp Dergisi, vol.30, no.1, 2023, ss.112 - 119. 10.5505/vtd.2023.98705
AMA Anapalı M,balkan e Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. Van Tıp Dergisi. 2023; 30(1): 112 - 119. 10.5505/vtd.2023.98705
Vancouver Anapalı M,balkan e Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü. Van Tıp Dergisi. 2023; 30(1): 112 - 119. 10.5505/vtd.2023.98705
IEEE Anapalı M,balkan e "Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü." Van Tıp Dergisi, 30, ss.112 - 119, 2023. 10.5505/vtd.2023.98705
ISNAD Anapalı, Merve - balkan, eda. "Renal Transplantasyon Sonrası Greft Fonksiyonlarının Takibinde MikroRNA’ların Rolü". Van Tıp Dergisi 30/1 (2023), 112-119. https://doi.org/10.5505/vtd.2023.98705