Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki

Yıl: 2022 Cilt: 24 Sayı: 1 Sayfa Aralığı: 75 - 87 Metin Dili: İngilizce DOI: 10.51963/jers.v24i1.2097 İndeks Tarihi: 04-05-2023

Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki

Öz:
In this study, the effects of various secondary metabolites in the economically important plants on the pupal weight, the pupal total protein and the pupal total lipid contents of Hyphantria cunea larvae infected by Bacillus thuringiensis subsp. kurstaki were investigated. In order to find out their effects on the larvae, the phenolic compounds present in Morus alba (mulberry), Malus pumila (apple), Prunus dometica (plum), and Juglans regia (walnut) leaves samples, which are the most preferred by H. cunea and have economic importance, were determined by phytochemical methods. The changes observed in the pupae’s weights, total protein and lipid contents were related to the plant leaves’ chemical contents. Among the non-infected groups, the mulberry-fed group had the highest both pupal weight and the pupal protein content. The minimum amount of gallotannin, as well as the catechin and rutin contents, was present in the mulberry leaves. The minimum pupal weight and the pupal protein contents were obtained in the larvae fed by the apple leaves with the highest rosmarinic acid and protocatechuic acid. The pupal weights and the pupal total protein contents were decreased by the bacterial infection, while the pupal total lipid contents increased by the bacterial infection. As a result of this study, the effects of both plant secondary metabolites experimentally used and B. thuringiensis infection on the pupal parameters of H. cunea were shown to be statistically significant.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abedi, Z., Saber, M., Vojoudi, S., Mahdavi, V., & Parsaeyan, E. (2014). Acute, sublethal, and combination effects of azadirachtin and Bacillus thuringiensis on the cotton bollworm, Helicoverpa armigera. Journal of Insect Science, 14, 30.
  • Adamczyk, B., Simon, J., Kitunen, V., Adamczyk, S., & Smolander, A. (2017). Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. Chemistry Open, 6(5), 610-614.
  • Ahmed, S., Wilkins, R., & Mantle, D. (2002). Comparative effect of various insecticides on intracellular proteases in an insecticide-resistant and susceptible strains of Musca domestica. Journal of Biological Sciences, 2(3), 183-185.
  • Aluja, M., Birke, A., Ceymann, M., Guillén, L., Arrigoni, E., Baumgartner, D., Pascacio-Villafán, C., & Samietz, J. (2014). Agroecosystem resilience to an invasive insect species that could expand its geographical range in response to global climate change. Agriculture, Ecosystems & Environment, 186, 54-63.
  • Ashok, P.K. & Upadhyaya, K. (2012). Tannins are astringent. Journal of Pharmacognosy and Phytochemistry, 1(3), 45-50.
  • Bate-Smith, E.C. (1977). Astringent tannins of Acer species. Phytochemistry, 16, 1421-1426. Barbehenn, R.V. & Constabel, P.C. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72(13), 1551-1564.
  • Barbehenn, R.V., Jaros, A., Lee, G., Mozola, C., Weir, Q., & Salminen, J.P. (2009). Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. Journal of Insect Physiology, 55, 297-304.
  • Bauerfeind, S.S. & Fischer, K. (2009). Effects of larval starvation and adult diet-derived amino acids on reproduction in a fruit-feeding butterfly. Entomologia Experimantalis et Applicata, 130(3), 229-237.
  • Beenakkers, A.M.T., Vanderhorst, D.J., & Vanmarrewijk, W.J.A. (1985). Insect lipids and lipoproteins, and their role in physiological processes. Progress in Lipid Research, 24(1), 19-67.
  • Ben-Dov, E., Boussiba, S., & Zaritsky, A. (1995). Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177(10), 2851-2857.
  • Beran, F., Kollner, T.G., Gershenzon, J., & Tholl, D. (2019). Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytologist, 223, 52-67.
  • Bhattacharya, A.K. & Chenchaiah, K.C. (2007). Seed coat phenolic compounds of Cajanus cajan as chemical barrier in formulation of artificial diet of Spodoptera litura (F.). Annals of Plant Protection Sciences 15(1), 92-96.
  • Chen, G., Kim, H.K., Klinkhamer, P.G.L., & Escobar Bravo, R. (2020). Site dependent induction of jasmonic acid associated chemical defenses against western flower thrips in Chrysanthemum. Planta, 251, 1-14.
  • Coyle, D.R., Clark, K.E., Raffa, K.F., & Johnson, S.N. (2011). Prior host feeding experience influences ovipositional but not feeding preference in a polyphagous insect herbivore. Entomologia Experimentalis et Applicate, 138(2), 137-145.
  • Desneux, N., Decourtye, A., & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106.
  • Dixit, G., Praveen, A., Tripathi, T., Yadav, V.K., & Verma, P.C. (2017). Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. Journal of Asia-Pacific Entomology, 20, 341-351.
  • Elgizawy, K.K. & Ashry, N.M. (2019). Efficiency of Bacillus thuringiensis strains and their Cry proteins against the red flour beetle, Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). Egyptian Journal of Biological Pest Control, 29(1), 1-9.
  • Esperk, T. & Tammaru, T. (2004). Does the ‘investment principle’ model explain moulting strategies in lepidopteran larvae? Physiological Entomology, 29, 56-66.
  • Gotthard, K. (2004). Growth strategies and optimal body size in temperate Pararginii butterflies. Integrative and Comparative Biology, 44, 471-479.
  • Guedes, R.N.C., Oliveira, E.E., Guedes, N.M.P., Ribeiro, B., & Serrao, J.E. (2006). Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais. Physiological Entomology, 31(1), 30-38.
  • Guerriero, G., Berni, R., Muñoz-Sanchez, J.A., Apone, F., Abdel-Salam, E.M., Qahtan, A.A., Alatar, A.A., Cantini, C., Cai, G., Hausman, J.F., Siddiqui, K.S., Hernández-Sotomayor, S.M.T., & Faisal, M. (2018). Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes, 9(6), 309.
  • Huang, X., Lv, S., Zhang, Z., & Chang, B.H. (2020). Phenotypic and transcriptomic response of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae) to toxic rutin. Frontiers in Physiology, 11, 52.
  • Ikonen, A., Tahvanainen, J., & Roininen, H. (2001). Chlorogenic acid as an antiherbivore defence of willow against leaf beetles. Entomologia Experimentalis et Applicata, 99, 47-54.
  • Kessler, A. & Baldwin, I.T. (2002). Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology, 53, 299-328.
  • Ketoh, G.K., Glitho, A.I., Koumaglo, K.H., & Garneau, F.X. (2000). Evaluation of essential oils from six aromatic plants in togo for Callosobruchus maculatus F. Pest control. International Journal of Tropical Insect Science, 20(1), 45-49.
  • Khan, S., Taning, C.N.T., Bonneure, E., Mangelinckx, S., Smagghe, G., Ahmad, R., Fatima, N., Asif, M., & Shah, M.M. (2019). Bioactivity-guided isolation of rosmarinic acid as the principle bioactive compound from the butanol extract of Isodon rugosus against the pea aphid, Acyrthosiphon pisum. Plos One, 14(6), e0215048.
  • Khosravi, R., Sendi, J., & Ghadamyari, M. (2010). Effect of Artemisia annua L. on deterrence and nutritional efficiency of lesser mulberry pyralid (Glyphodes pylolais Walker) (Lepidoptera: Pyralidae). Journal of Plant Protection Research, 50, 423-428.
  • Kundu, A. & Vadassery, J. (2019). Chlorogenic acid-mediated chemicaldefence of plants against insect herbivores. Plant Biology, 21(2), 185-189.
  • Lease, H.M. & Wolf, B.O. (2011). Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36(1), 29-38.
  • Liao, F., Wang, L., Wu, S., Li, Y.P., Zhao, L., Huang, G.M., Niu, C.J., Liu, Y.Q., & Li, M.G. (2010). The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae). International Journal of Biological Sciences, 6(2), 172-186.
  • Lindroth, R.L. & St Clair, S.B. (2013). Adaptations of quaking aspen (Populus tremuloides Michx.) for defense against herbivores. Forest Ecology and Management, 299, 14-21.
  • Ludlum, C.T., Felton, G.W., & Duffey, S.S. (1991). Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis subsp. kurstaki to Heliothis zea. Journal of Chemical Ecology, 17, 217.
  • Ma, K., Li, F., Tang, Q., Liang, P., Liu, Y., Zhang, B., & Gao, X. (2019). CYP4CJ1-mediated gossypol and tannic acid tolerance in Aphis gossypii Glover. Chemosphere, 219, 961-970.
  • Mazid M., Khan, T.A., & Mohammad, F. (2011). Role of secondary metabolites in defense mechanisms of plants. Biology and Medicine, 3, 232-249.
  • Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z., & Kamita, S.G. (2016). Individual and combined effects of Bacillus thuringiensis and azadirachtin on Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Journal of Insect Science, 16(1), 95.
  • Oonincx, D.G.A.B., van Broekhoven, S., van Huis, A., & van Loon, J.J.A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10, 1-20.
  • Pineda, S., Martinez, A.M., Figueroa, J.I., Schneider, M.I., Estal, D.P., Estal, V.E., Gomez, B., Smagghe, G., & Budia, F. (2009). Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology, 102(4), 1490-1496.
  • Qu, Y.Y., Xiao, D., Li, J., Chen, Z., Biondi, A., Desneux, N., Gao, X., & Song, D. (2015). Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology, 24(3), 479-487.
  • Rosa, E., Woestmann, L., Biere, A., & Saastamoinen, M. (2018). A plant pathogen modulates the effects of secondary metabolites on the performance and immune function of an insect herbivore. Oikos, 127, 1539-1549.
  • Sak, O., Ergin, E., Uçkan, F., Rivers, D.B., & Er, A. (2011). Changes in the hemolymph total protein of Galleria mellonella (Lepidoptera: Pyralidae) after parasitism and envenomation by Pimpla turionellae (Hymenoptera: Ichneumonidae). Turkish Journal of Biology, 35(4), 425-432.
  • Sak, O., Uçkan, F., & Ergin, E. (2006). Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Belgian Journal of Zoology, 136(1), 53-58.
  • Silva, T.R.F.B., de Sousa Almeida, A.C., de Lima Moura, T., de Silva, A.R. de Sousa Freitas, S., & Jesus F.G. (2016). Effect of flavonoid rutin on the biology of Spodoptera frugiperda (Lepidoptera: Noctuidae). Acta Scientiarum, 38(2), 165-170.
  • Simpson, S.J. (1983). Changes during the fifth instar of Locusta migratoria in the rate of crop emptying and their relationship to feeding and food utilization. Entomologia Experimentalis et Applicata, 33, 235-243.
  • Smit, E.N., Muskiet, F.A.J., & Boersma, E.R. (2004). The possible role of essential fatty acids in the pathophysiology of malnutrition: a review. Prostaglandins, Leukotrienes & Essential Fatty Acids, 71(4), 241-250.
  • Sousa, F.F., Mendes, S.M., Santos-Amaya, O.F., Araujo, O.G., Oliveira, E.E., & Pereira, E.J.G. (2016). Life-history traits of Spodoptera frugiperda populations exposed to low-dose Bt maize. Plos One, 11, e0156608.
  • Stam, J.M., Kroes, A., Li, Y., Gols, R., van Loon, J.J.A., Poelman, E.H., & Dicke, M. (2014). Plant interactions with multiple insect herbivores: from the community to genes. Annual Review of Plant Biology, 65(1), 689-713.
  • Stark, J.D. & Banks, J.E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology 48, 505-519.
  • Syafni, N., Putra, D.P., & Arbain, D. (2012). 34-Dihydroxybenzoic acid and 34-dihydroxybenzaldehyde from the fern Trichomanes chinense; isolation antimicrobial and antioxidant properties. Indonesian Journal of Chemistry, 12, 273-278.
  • Tan, Q.G. & Luo, X.D. (2011). Meliaceous limonoids: chemistry and biological activities. Chemical Reviews, 111, 7437-7522.
  • Tangtrakulwanich, K. & Reddy, G.V.P. (2014). Advances in plant biopesticides. Springer, New Delhi, India.
  • Tayal, M. & Somavat, P., Rodriguez, I., Martinez, L., & Kariyat, R. (2020). Cascading effects of polyphenol-rich purple corn pericarp extract on pupal, adult, and offspring of tobacco hornworm (Manduca sexta L.). Communicate & Integrative Biology, 13(1), 43-53.
  • Tek, S.E. & Okyar, Z. (2017). Biological observations on some herbivorous insects. Trakya University Journal of Natural Sciences, 18(1), 59-64.
  • Topkara, E.F. (2019). The effects of different secondary compounds on the development of Uresiphita gilvata (Lepidoptera: Crambidae) larvae. Turkish Journal of Agriculture-Food Science and Technology, 7(2), 253-257.
  • Weinzierl, R., Henn, T., Koehler, P.G., & Tucker, C.L. (2005). Microbial insecticides. University of Florida Institute of Food and Agricultural Sciences Extension, Gainesville, Florida.
  • Xu, C., Zhang, Z., Cui, K., Zhao, Y., Han, J., Liu, F., & Mu, W. (2016). Effects of sublethal concentrations of cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS One, 11(6), e0156555.
  • Yi, L.Y., Lakemond, C.M.M., Sagis, L.M.C., Eisner-Schadler, V., van Huis, A., & van Boekel, M.A.J.S. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry, 141(4), 3341-3348.
  • Zhao, Y., Yang, G., Wang-Pruski, G., & You, M. (2008). Phyllotreta striolata (Coleoptera: Chrysomelidae): arginine kinase cloning and RNAi-based pest control. European Journal of Entomology, 105(5), 815-822.
  • Zhao, Y.H., Xu, C.M., Wang, Q.H., Wei, Y., Liu, F., & Mu, W. (2016). Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae). Pesticide Biochemistry and Physiology, 129, 49-55.
  • Ziegler, R. (1991). Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. Journal of Comparative Physiology B, 161(2), 125-131.
APA Topkara E (2022). Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. , 75 - 87. 10.51963/jers.v24i1.2097
Chicago Topkara Elif Fatma Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. (2022): 75 - 87. 10.51963/jers.v24i1.2097
MLA Topkara Elif Fatma Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. , 2022, ss.75 - 87. 10.51963/jers.v24i1.2097
AMA Topkara E Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. . 2022; 75 - 87. 10.51963/jers.v24i1.2097
Vancouver Topkara E Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. . 2022; 75 - 87. 10.51963/jers.v24i1.2097
IEEE Topkara E "Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki." , ss.75 - 87, 2022. 10.51963/jers.v24i1.2097
ISNAD Topkara, Elif Fatma. "Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki". (2022), 75-87. https://doi.org/10.51963/jers.v24i1.2097
APA Topkara E (2022). Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. Journal of the Entomological Research Society, 24(1), 75 - 87. 10.51963/jers.v24i1.2097
Chicago Topkara Elif Fatma Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. Journal of the Entomological Research Society 24, no.1 (2022): 75 - 87. 10.51963/jers.v24i1.2097
MLA Topkara Elif Fatma Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. Journal of the Entomological Research Society, vol.24, no.1, 2022, ss.75 - 87. 10.51963/jers.v24i1.2097
AMA Topkara E Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. Journal of the Entomological Research Society. 2022; 24(1): 75 - 87. 10.51963/jers.v24i1.2097
Vancouver Topkara E Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki. Journal of the Entomological Research Society. 2022; 24(1): 75 - 87. 10.51963/jers.v24i1.2097
IEEE Topkara E "Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki." Journal of the Entomological Research Society, 24, ss.75 - 87, 2022. 10.51963/jers.v24i1.2097
ISNAD Topkara, Elif Fatma. "Effects of Selected Plant Secondary Metabolites in Mulberry, Apple, Plum, and Walnut on the Pupal Parameters of Hyphantria cunea Drury, 1773 (Lepidoptera: Arctiidae) Larvae Infected by Bacillus thuringiensis subsp. kurstaki". Journal of the Entomological Research Society 24/1 (2022), 75-87. https://doi.org/10.51963/jers.v24i1.2097