Yıl: 2023 Cilt: 7 Sayı: 1 Sayfa Aralığı: 1 - 9 Metin Dili: İngilizce DOI: 10.14744/ejmo.2023.53477 İndeks Tarihi: 05-05-2023

The Role of Autophagy in Myocardial Ischemia and Reperfusion

Öz:
Autophagy is a process in which lysosome-mediated intracellular damage or aging organelles and proteins are degraded to produce amino acids, fatty acids, ATP, etc., and then reused by cells. Under normal physiological conditions, cardiomyocytes maintain low levels of autophagy. However, autophagy is activated during myocardial ischemia-reperfusion (MI/R), and autophagosomes increase significantly, indicating that autophagy plays an important role in myocardial ischemia-reperfusion injury (MI/RI). Studies have shown that autophagy has protective and detrimental effects on MI/RI and is regulated by a variety of factors. This article reviews the relationship between autophagy and MI/RI.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Ma S, Wang Y, Chen Y, Cao F. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 2015;1852:271–6.
  • 2. Xie M, Morales CR, Lavandero S, Hill JA. Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol 2011;26:216–22.
  • 3. Sciarretta S, Maejima Y, Zablocki D, Sadoshima J. The role of autophagy in the heart. Annu Rev Physiol 2018;80:1–26.
  • 4. Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res 2009;104:150–8.
  • 5. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451:1069–75.
  • 6. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007;100:914–22.
  • 7. Sadoshima J. The role of autophagy during ischemia/reperfusion. Autophagy 2008;4:402–3.
  • 8. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008;9:1004–10.
  • 9. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007;117:1782–93.
  • 10. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C. Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Physiol Heart Circ Physiol 2013;305:H459–76.
  • 11. Riquelme JA, Chavez MN, Mondaca-Ruff D, Bustamante M, Vicencio JM, Quest AF, et al. Therapeutic targeting of autophagy in myocardial infarction and heart failure. Expert Rev Cardiovasc Ther 2016;14:1007–19.
  • 12. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6:463–77.
  • 13. Lavandero S, Chiong M, Rothermel BA, Hill JA. Autophagy in cardiovascular biology. J Clin Invest 2015;125:55–64.
  • 14. Woodall BP, Gustafsson ÅB. Autophagy-A key pathway for cardiac health and longevity. Acta Physiol (Oxf) 2018;223:e13074.
  • 15. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147:728–41.
  • 16. Green DR, Levine B. To be or not to be? How selective autophagy and cell death govern cell fate. Cell 2014;157:65–75.
  • 17. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27–42.
  • 18. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010;12:814–22.
  • 19. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo- Margareto J, et al. A comprehensive glossary of autophagyrelated molecules and processes. Autophagy 2010;6:438–48.
  • 20. Przyklenk K, Dong Y, Undyala VV, Whittaker P. Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 2012;94:197–205.
  • 21. Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J, Hill JA. Cardiovascular autophagy: concepts, controversies, and perspectives. Autophagy 2013;9:1455–66.
  • 22. Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019;176:11–42.
  • 23. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003;116:1679–88.
  • 24. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N, Ohsumi Y, et al. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 2009;28:1341–50.
  • 25. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, et al. A ubiquitin-like system mediates protein lipidation. Nature 2000;408:488–92.
  • 26. Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting Autophagy to Overcome Human Diseases. Int J Mol Sci 2019;20:725.
  • 27. Monastyrska I, Rieter E, Klionsky DJ, Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 2009;84:431–48.
  • 28. Mackeh R, Perdiz D, Lorin S, Codogno P, Poüs C. Autophagy and microtubules - new story, old players. J Cell Sci 2013;126:1071–80.
  • 29. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 2007;3:405–7.
  • 30. Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 2015;26:422– 9.
  • 31. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011;13:132–41.
  • 32. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, et al. Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 2005;102:13807–12.
  • 33. Liang K, Qian WH, Zong J. 3,3' Diindolylmethane attenuates cardiomyocyte hypoxia by modulating autophagy in H9c2 cells. Mol Med Rep 2017;16:9553–60.
  • 34. Zhang Z, Li H, Chen S, Li Y, Cui Z, Ma J. Knockdown of MicroRNA- 122 protects H9c2 cardiomyocytes from hypoxiainduced apoptosis and promotes autophagy. Med Sci Monit 2017;23:4284–90.
  • 35. Chiang MH, Liang CJ, Liu CW, Pan BJ, Chen WP, Yang YF, et al. Aliskiren improves ischemia- and oxygen glucose deprivationinduced cardiac injury through activation of autophagy and AMP-activated protein kinase. Front Pharmacol 2017;8:819.
  • 36. Du L, Shen T, Liu B, Zhang Y, Zhao C, Jia N, et al. Shock wave therapy promotes cardiomyocyte autophagy and survival during hypoxia. Cell Physiol Biochem 2017;42:673–84.
  • 37. Wu X, Qin Y, Zhu X, Liu D, Chen F, Xu S, et al. Increased expression of DRAM1 confers myocardial protection against ischemia via restoring autophagy flux. J Mol Cell Cardiol 2018;124:70–82.
  • 38. Sung HK, Chan YK, Han M, Jahng JWS, Song E, Danielson E, et al. Lipocalin-2 (NGAL) attenuates autophagy to exacerbate cardiac apoptosis induced by myocardial ischemia. J Cell Physiol 2017;232:2125–34.
  • 39. Zhang J, He Z, Xiao W, Na Q, Wu T, Su K, et al. Overexpression of BAG3 attenuates hypoxia-induced cardiomyocyte apoptosis by inducing autophagy. Cell Physiol Biochem 2016;39:491– 500.
  • 40. Gu Y, Gao L, Chen Y, Xu Z, Yu K, Zhang D, et al. Sanggenon C protects against cardiomyocyte hypoxia injury by increasing autophagy. Mol Med Rep 2017;16:8130–6.
  • 41. Wu S, Zhang H, Chen N, Zhang C, Guo X. Metformin protects cardiomyocytes against oxygen-glucose deprivation injury by promoting autophagic flux through AMPK pathway. J Drug Target 2021;29:551–61.
  • 42. Jia Z, Lin L, Huang S, Zhu Z, Huang W, Huang Z. Inhibition of autophagy by berberine enhances the survival of H9C2 myocytes following hypoxia. Mol Med Rep 2017;16:1677–84.
  • 43. Wang G, Dai G, Song J, Zhu M, Liu Y, Hou X, et al. Lactone component from ligusticum chuanxiong alleviates myocardial ischemia injury through inhibiting autophagy. Front Pharmacol 2018;9:301.
  • 44. Liu X, Deng Y, Xu Y, Jin W, Li H. MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 2018;118:133–46.
  • 45. Wang J, Hou J, Lin C, Fu J, Ren J, Li L, et al. Shuangshen Ningxin capsule, a traditional Chinese medicinal preparation, alleviates myocardial ischemia through autophagy regulation. Evid Based Complement Alternat Med 2015;2015:581260.
  • 46. Shi B, Ma M, Zheng Y, Pan Y, Lin X. mTOR and Beclin1: Two key autophagy-related molecules and their roles in myocardial ischemia/reperfusion injury. J Cell Physiol 2019;234:12562–8.
  • 47. Efeyan A, Zoncu R, Chang S, Gumper I, Snitkin H, Wolfson RL, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013;493:679– 83.
  • 48. Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl- 2. Mol Cell 2007;25:193–205.
  • 49. Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 2003;60:617–25.
  • 50. Qian J, Ren X, Wang X, Zhang P, Jones WK, Molkentin JD, et al. Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circ Res 2009;105:1223–31.
  • 51. Hu Y, Sun Q, Li Z, Chen J, Shen C, Song Y, et al. High basal level of autophagy in high-altitude residents attenuates myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2014;148:1674–80.
  • 52. Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, et al. Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 2014;129:1139–51.
  • 53. Li S, Liu C, Gu L, Wang L, Shang Y, Liu Q, et al. Autophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36. Open Biol 2016;6:160177.
  • 54. Wu D, Jiang H, Chen S, Zhang H. Inhibition of microRNA-101 attenuates hypoxia/reoxygenation induced apoptosis through induction of autophagy in H9c2 cardiomyocytes. Mol Med Rep 2015;11:3988–94.
  • 55. Mo Y, Tang L, Ma Y, Wu S. Pramipexole pretreatment attenuates myocardial ischemia/reperfusion injury through upregulation of autophagy. Biochem Biophys Res Commun 2016;473:1119–24.
  • 56. Duan Q, Yang W, Jiang D, Tao K, Dong A, Cheng H. Spermine ameliorates ischemia/reperfusion injury in cardiomyocytes via regulation of autophagy. Am J Transl Res 2016;8:3976–85.
  • 57. Song H, Yan C, Tian X, Zhu N, Li Y, Liu D, et al. CREG protects from myocardial ischemia/reperfusion injury by regulating myocardial autophagy and apoptosis. Biochim Biophys Acta Mol Basis Dis 2017;1863:1893–903.
  • 58. Hao M, Zhu S, Hu L, Zhu H, Wu X, Li Q. Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nNOS/AMPK/mTOR pathway. Int J Mol Sci 2017;18:614.
  • 59. Zhang S, Zhang L, Zhang H, Fan G, Qiu J, Fang Z, et al. Hongjingtian injection attenuates myocardial oxidative damage via promoting autophagy and inhibiting apoptosis. Oxid Med Cell Longev 2017;2017:6965739.
  • 60. Liu L, Jin X, Hu CF, Li R, Zhou Z, Shen CX. exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/ reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem 2017;43:52–68.
  • 61. Liang S, Ping Z, Ge J. Coenzyme Q10 regulates antioxidative stress and autophagy in acute myocardial ischemia-reperfusion injury. Oxid Med Cell Longev 2017;2017:9863181.
  • 62. Huang WQ, Wen JL, Lin RQ, Wei P, Huang F. Effects of mTOR/ NF-κB signaling pathway and high thoracic epidural anesthesia on myocardial ischemia-reperfusion injury via autophagy in rats. J Cell Physiol 2018;233:6669–78.
  • 63. Fu H, Li X, Tan J. NIPAAm-MMA nanoparticle-encapsulated visnagin ameliorates myocardial ischemia/reperfusion injury through the promotion of autophagy and the inhibition of apoptosis. Oncol Lett 2018;15:4827–36.
  • 64. Meng Z, Song MY, Li CF, Zhao JQ. shRNA interference of NLRP3 inflammasome alleviate ischemia reperfusion-induced myocardial damage through autophagy activation. Biochem Biophys Res Commun 2017;494:728–35.
  • 65. Meng X, Yuan Y, Shen F, Li C. Heme oxygenase-1 ameliorates hypoxia/reoxygenation via suppressing apoptosis and enhancing autophagy and cell proliferation though Sirt3 signaling pathway in H9c2 cells. Naunyn Schmiedebergs Arch Pharmacol 2019;392:189–98.
  • 66. Xiao J, Ke ZP, Shi Y, Zeng Q, Cao Z. The cardioprotective effect of thymoquinone on ischemia–reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. J Cell Biochem 2018;119:7212–7.
  • 67. Zhang ZL, Fan Y, Liu ML. Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation. Mol Cell Biochem 2012;365:243–50.
  • 68. Cao X, Chen A, Yang P, Song X, Liu Y, Li Z, et al. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Biochem Biophys Res Commun 2013;441:935–40.
  • 69. Cheng BC, Huang HS, Chao CM, Hsu CC, Chen CY, Chang CP. Hypothermia may attenuate ischemia/reperfusion-induced cardiomyocyte death by reducing autophagy. Int J Cardiol 2013;168:2064–9.
  • 70. Jian J, Xuan F, Qin F, Huang R. Bauhinia championii flavone inhibits apoptosis and autophagy via the PI3K/Akt pathway in myocardial ischemia/reperfusion injury in rats. Drug Des Devel Ther 2015;9:5933–45.
  • 71. Huang Z, Han Z, Ye B, Dai Z, Shan P, Lu Z, et al. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. Eur J Pharmacol 2015;762:1–10.
  • 72. Xiao J, Zhu X, Kang B, Xu J, Wu L, Hong J, et al. Hydrogen sulfide attenuates myocardial hypoxia-reoxygenation injury by inhibiting autophagy via mTOR activation. Cell Physiol Biochem 2015;37:2444–53.
  • 73. Wang B, Zhong S, Zheng F, Zhang Y, Gao F, Chen Y, et al. Nn- butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. Oncotarget 2015;6:24709–21.
  • 74. Wang A, Zhang H, Liang Z, Xu K, Qiu W, Tian Y, et al. U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol 2016;788:280–5.
  • 75. Xuan F, Jian J, Lin X, Huang J, Jiao Y, Huang W, et al. 17-methoxyl- 7-hydroxy-benzene-furanchalcone ameliorates myocardial ischemia/reperfusion injury in rat by inhibiting apoptosis and autophagy via the PI3K-Akt signal pathway. Cardiovasc Toxicol 2017;17:79–87.
  • 76. Fan G, Yu J, Asare PF, Wang L, Zhang H, Zhang B, et al. Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling. J Cell Mol Med 2016;20:1908–19.
  • 77. Wang S, Wang C, Yan F, Wang T, He Y, Li H, et al. N-acetylcysteine attenuates diabetic myocardial ischemia reperfusion injury through inhibiting excessive autophagy. Mediators Inflamm 2017;2017:9257291.
  • 78. Wang Y, Wang Q, Zhang L, Ke Z, Zhao Y, Wang D, et al. Coptisine protects cardiomyocyte against hypoxia/reoxygenationinduced damage via inhibition of autophagy. Biochem Biophys Res Commun 2017;490:231–8.
  • 79. Shi X, Zhu H, Zhang Y, Zhou M, Tang D, Zhang H. XuefuZhuyu decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy. BMC Complement Altern Med 2017;17:325.
  • 80. Li YY, Xiang Y, Zhang S, Wang Y, Yang J, Liu W, et al. Thioredoxin- 2 protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy and apoptosis in H9c2 cardiomyocytes. Am J Transl Res 2017;9:1471–82.
  • 81. Huang Z, Wu S, Kong F, Cai X, Ye B, Shan P, et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway. J Cell Mol Med 2017;21:467–74.
  • 82. Zheng Y, Gu S, Li X, Tan J, Liu S, Jiang Y, et al. Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 2017;8:e2577.
  • 83. Qiu R, Li W, Liu Y. MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy. Biomed Pharmacother 2018;100:15–19.
  • 84. Deng Y, Chen G, Ye M, He Y, Li Z, Wang X, et al. Bifunctional supramolecular hydrogel alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy and apoptosis. J Biomed Nanotechnol 2018;14:1458–70.
  • 85. Dang M, Zeng X, Chen B, Wang H, Li H, Liu Y, et al. Soluble receptor for advance glycation end-products inhibits ischemia/ reperfusion-induced myocardial autophagy via the STAT3 pathway. Free Radic Biol Med 2019;130:107–19.
  • 86. Hu S, Cao S, Tong Z, Liu J. FGF21 protects myocardial ischemiareperfusion injury through reduction of miR-145-mediated autophagy. Am J Transl Res 2018;10:3677–88.
  • 87. Liu YY, Sun C, Xue FS, Yang GZ, Li HX, Liu Q, et al. Effect of autophagy inhibition on the protection of ischemia preconditioning against myocardial ischemia/reperfusion injury in diabetic rats. Chin Med J (Engl) 2018;131:1702–9.
  • 88. Li X, Hu X, Wang J, Xu W, Yi C, Ma R, et al. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. Int J Mol Med 2018;42:1917–24.
  • 89. Chen WR, Liu HB, Chen YD, Sha Y, Ma Q, Zhu PJ, et al. Melatonin attenuates myocardial ischemia/reperfusion injury by inhibiting autophagy via an AMPK/mTOR signaling pathway. Cell Physiol Biochem 2018;47:2067–76.
  • 90. Zheng J, Li J, Kou B, Yi Q, Shi T. MicroRNA-30e protects the heart against ischemia and reperfusion injury through autophagy and the Notch1/Hes1/Akt signaling pathway. Int J Mol Med 2018;41:3221–30.
  • 91. Li H, Zhang X, Tan J, Sun L, Xu LH, Jiang YG, et al. Propofol postconditioning protects H9c2 cells from hypoxia/reoxygenation injury by inducing autophagy via the SAPK/JNK pathway. Mol Med Rep 2018;17:4573–80.
  • 92. Yu SY, Dong B, Fang ZF, Hu XQ, Tang L, Zhou SH. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J Cell Mol Med 2018;22:4886–98.
  • 93. Lu Y, Bu M, Yun H. Sevoflurane prevents hypoxia/reoxygenation- induced cardiomyocyte apoptosis by inhibiting PI3KC3- mediated autophagy. Hum Cell 2019;32:150–9.
  • 94. Tong F, Zhang H. Pulmonary Exposure to Particulate Matter (PM2.5) Affects the Sensitivity to Myocardial Ischemia/Reperfusion Injury Through Farnesoid-X-Receptor-Induced Autophagy. Cell Physiol Biochem 2018;46:1493–507.
  • 95. Guo X, Jiang H, Yang J, Chen J, Yang J, Ding JW, et al. Radioprotective 105 kDa protein attenuates ischemia/reperfusioninduced myocardial apoptosis and autophagy by inhibiting the activation of the TLR4/NF-κB signaling pathway in rats. Int J Mol Med 2016;38:885–93.
  • 96. Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death Differ 2019;26:1299–15.
  • 97. Ye G, Fu Q, Jiang L, Li Z. Vascular smooth muscle cells activate PI3K/Akt pathway to attenuate myocardial ischemia/reperfusion- induced apoptosis and autophagy by secreting bFGF. Biomed Pharmacother 2018;107:1779–85.
  • 98. Wu S, Chang G, Gao L, Jiang D, Wang L, Li G, et al. Trimetazidine protects against myocardial ischemia/reperfusion injury by inhibiting excessive autophagy. J Mol Med (Berl) 2018;96:791–806.
  • 99. Zheng Y, Shi B, Ma M, Wu X, Lin X. The novel relationship between Sirt3 and autophagy in myocardial ischemia-reperfusion. J Cell Physiol 2019;234:5488–95.
  • 100. Li J, Zhang D, Wiersma M, Brundel BJJM. Role of autophagy in proteostasis: friend and foe in cardiac diseases. Cells 2018;7:279.
  • 101. Xu Q, Li X, Lu Y, Shen L, Zhang J, Cao S, et al. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion. Br J Pharmacol 2015;172:3072–85.
  • 102. Zeng C, Li H, Fan Z, Zhong L, Guo Z, Guo Y, et al. Crocin-elicited autophagy rescues myocardial ischemia/reperfusion injury via paradoxical mechanisms. Am J Chin Med 2016;44:515–30.
APA WU S, Guo X, Chen N (2023). The Role of Autophagy in Myocardial Ischemia and Reperfusion. , 1 - 9. 10.14744/ejmo.2023.53477
Chicago WU Shiyong,Guo Xueli,Chen Ningheng The Role of Autophagy in Myocardial Ischemia and Reperfusion. (2023): 1 - 9. 10.14744/ejmo.2023.53477
MLA WU Shiyong,Guo Xueli,Chen Ningheng The Role of Autophagy in Myocardial Ischemia and Reperfusion. , 2023, ss.1 - 9. 10.14744/ejmo.2023.53477
AMA WU S,Guo X,Chen N The Role of Autophagy in Myocardial Ischemia and Reperfusion. . 2023; 1 - 9. 10.14744/ejmo.2023.53477
Vancouver WU S,Guo X,Chen N The Role of Autophagy in Myocardial Ischemia and Reperfusion. . 2023; 1 - 9. 10.14744/ejmo.2023.53477
IEEE WU S,Guo X,Chen N "The Role of Autophagy in Myocardial Ischemia and Reperfusion." , ss.1 - 9, 2023. 10.14744/ejmo.2023.53477
ISNAD WU, Shiyong vd. "The Role of Autophagy in Myocardial Ischemia and Reperfusion". (2023), 1-9. https://doi.org/10.14744/ejmo.2023.53477
APA WU S, Guo X, Chen N (2023). The Role of Autophagy in Myocardial Ischemia and Reperfusion. Eurasian Journal of Medicine and Oncology, 7(1), 1 - 9. 10.14744/ejmo.2023.53477
Chicago WU Shiyong,Guo Xueli,Chen Ningheng The Role of Autophagy in Myocardial Ischemia and Reperfusion. Eurasian Journal of Medicine and Oncology 7, no.1 (2023): 1 - 9. 10.14744/ejmo.2023.53477
MLA WU Shiyong,Guo Xueli,Chen Ningheng The Role of Autophagy in Myocardial Ischemia and Reperfusion. Eurasian Journal of Medicine and Oncology, vol.7, no.1, 2023, ss.1 - 9. 10.14744/ejmo.2023.53477
AMA WU S,Guo X,Chen N The Role of Autophagy in Myocardial Ischemia and Reperfusion. Eurasian Journal of Medicine and Oncology. 2023; 7(1): 1 - 9. 10.14744/ejmo.2023.53477
Vancouver WU S,Guo X,Chen N The Role of Autophagy in Myocardial Ischemia and Reperfusion. Eurasian Journal of Medicine and Oncology. 2023; 7(1): 1 - 9. 10.14744/ejmo.2023.53477
IEEE WU S,Guo X,Chen N "The Role of Autophagy in Myocardial Ischemia and Reperfusion." Eurasian Journal of Medicine and Oncology, 7, ss.1 - 9, 2023. 10.14744/ejmo.2023.53477
ISNAD WU, Shiyong vd. "The Role of Autophagy in Myocardial Ischemia and Reperfusion". Eurasian Journal of Medicine and Oncology 7/1 (2023), 1-9. https://doi.org/10.14744/ejmo.2023.53477