Yıl: 2023 Cilt: 28 Sayı: 1 Sayfa Aralığı: 113 - 120 Metin Dili: İngilizce DOI: 10.53433/yyufbed.1134273 İndeks Tarihi: 16-05-2023

Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes

Öz:
Today, with the understanding of the favourable effects of fruit consumption on health, the consumption of pomegranate has increased gradually, and solution methods were sought to evaluate the peel and seed parts that emerge after the fruit is sorted. In this study, the effects of different drying processes (microwave, drying oven, and freeze-drying) and different extraction solvents (ethanol and methanol) on the antioxidant and antidiabetic activities of pomegranate press wastes were investigated. While the highest total phenolic content (TPC) was in freeze-dried methanolic extracts (5758.70 mg GAE 100 g-1), the highest total flavonoid content (TFC) and total monomeric anthocyanin (MA) contents were determined in microwave-dried ethanolic extracts with values of 1068.75 mg QE 100 g-1 dw and 215.44 mg cyn-3-glu 100 g-1, respectively. All samples had higher α-glucosidase inhibitory activity compared to acarbose. The results showed that pomegranate press waste, which is thought to have no use in the food industry, is a potential resource that can be used in the pharmacology and cosmetics industries as well as its use as a food supplement; thanks to its high antioxidant and antidiabetic properties.
Anahtar Kelime: Antidiabetic activity Bioactive components Drying method Pomegranate Press waste

Farklı Kurutma İşlemlerinin Nar Pres Atıklarının Antioksidan ve Antidiyabetik Özellikleri Üzerine Etkisi

Öz:
Günümüzde meyve tüketiminin sağlığa faydalı etkilerinin anlaşılmasıyla birlikte nar tüketimi giderek artmış ve meyvenin ayıklanması sonrasında ortaya çıkan kabuk ve çekirdek kısımlarının değerlendirilmesi amacıyla çözüm yöntemleri aranmaya başlanmıştır. Bu çalışmada, farklı kurutma yöntemlerinin (mikrodalga, etüv ve dondurarak kurutma) ve farklı ekstraksiyon solventlerinin (etanol ve metanol) nar pres atıklarının antioksidan ve antidiyabetik aktivitesi üzerine etkileri incelenmiştir. En yüksek toplam fenolik madde içeriği (TPC) dondurarak kurutulmuş metanolik ekstraktlarda (5758.70 mg GAE/100 g), en yüksek toplam flavonoid madde içeriği (TFC) ve toplam monomerik antosiyanin (MA) içerikleri mikrodalgada kurutulmuş etanolik ekstraktlarda sırasıyla 1068.75 mg QE/100 g dw ve 215.44 mg cyn-3-glu/100 g olarak belirlenmiştir. Tüm örnekler akarboza kıyasla daha yüksek α-glukozidaz inhibitör aktiviteye sahipti. Sonuçlar, gıda endüstrisinde kullanım imkânı bulunmadığı düşünülen nar pres atıklarının yüksek antioksidan ve antidiyabetik özellikleri sayesinde gıda takviyesi olarak kullanımının yanı sıra farmakoloji ve kozmetik endüstrilerinde de kullanılabilecek potansiyel bir kaynak olduğunu göstermiştir.
Anahtar Kelime: Antidiyabetik aktivite Biyoaktif bileşenler Kurutma yöntemi Nar Pres atığı

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abbasi, H., Rezaei, K., Emamdjomeh, Z., & Mousavi, S. M. E. (2008). Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. European Journal of Lipid Science and Technology, 110(5), 435-440. doi:10.1002/ejlt.200700199
  • Adisakwattana, S., & Chanathong, B. (2011). Alpha-glucosidase inhibitory activity and lipid-lowering mechanisms of Moringa oleifera leaf extract. European Review for Medical and Pharmacological Sciences, 15, 803-808.
  • Amyrgialaki, E., Makris, D. P., Mauromoustakos, A., & Kefalas, P. (2014). Optimisation of the extraction of pomegranate (Punica granatum) husk phenolics using water/ethanol solvent systems and response surface methodology. Industrial Crops and Products, 59, 216-222. doi:10.1016/j.indcrop.2014.05.011
  • Andlauer, W., & Furst, P. (2003). Special characteristics of non nutrient food constituents of plants - phytochemicals. Introductory lecture. International Journal for Vitamin and Nutrition Research, 73, 55-62. doi:10.1024/0300-9831.73.2.55
  • AOAC. (2006). Official Method of Analysis (18th Edition). Maryland, USA: Association of Official Analytical Chemists.
  • Arshadi, S., Azarbayjani, M. A., Hajaghaalipor, F., Yusof, A., Peeri, M., Bakhtiyari, S., Stannard, R. S., Osman, N. A., & Dehghan, F. (2015). Evaluation of Trigonella foenum-graecum extract in combination with swimming exercise compared to glibenclamide consumption on type 2 diabetic rodents. Food & Nutrition Research, 59, 29717. doi:10.3402/fnr.v59.29717
  • Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237-1241. doi:10.1021/jf020635c
  • Díaz, G. R., Martínez-Monzó, J., Fito, P., & Chiralt, A. (2003). Modelling of dehydration-rehydration of orange slices in combined microwave/air drying. Innovative Food Science & Emerging Technologies, 4(2), 203-209. doi:10.1016/S1466-8564(03)00016-X
  • Gao, H., Cheng, N., Zhou, J., Wang, B., Deng, J., & Cao, W. (2014). Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. Journal of Food Science and Technology, 51, 950-956. doi:10.1007/s13197-011-0591-x
  • Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement with UV-Visible spectroscopy. Current Protocols in Food Analytical Chemistry, 1-13. doi:10.1002/0471142913.faf0102s00
  • Jurenka, J. S. (2008). Therapeutic applications of pomegranate (Punica granatum L.): A review. Alternative Medicine Review, 13(2), 128-144.
  • Kalaycıoğlu, Z., & Erim, F. B. (2017). Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chemistry, 221, 496-507. doi:10.1016/j.foodchem.2016.10.084
  • Karaman, S., Toker, O. S., Çam, M., Hayta, M., Dogan, M., & Kayacier, A. (2014). Bioactive and physicochemical properties of persimmon as affected by drying methods. Drying Technology, 32, 258-267. doi:10.1080/07373937.2013.821480
  • Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables - the millennium’s health. International Journal of Food Science and Technology, 36, 703-725. doi:10.1111/j.1365-2621.2001.00513.x
  • Köse, Y. E. (2018). Stabilizasyon yöntemlerinin ruşeym ve ruşeym yağının özellikleri üzerine etkisi. (PhD), Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van, Türkiye.
  • Lee Mei Ling, A., Yasir, S., Matanjun, P., & Bakar Abu, M. F. (2013). Antioxidant activity, total phenolic and flavonoid content of selected commercial Seaweeds of Sabah, Malaysia. International Journal of Pharmaceutical and Phytopharmacological Research, 3, 2249-2259.
  • Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133, 1577-1587. doi:10.1016/j.foodchem.2012.02.052
  • López, J., Vega-Gálvez, A., Torres, M. J., Lemus-Mondaca, R., Quispe-Feutes, I., & Di Scala, K. (2013). Effect of dehydration temperature on physic-chemical properties and antioxidant capacity of goldenberry (Physalis peruviana L.). Chilean Journal of Agricultural Research, 73, 293-300. doi:10.4067/S0718-58392013000300013
  • Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Separation and Purification Technology, 162, 68-76. doi:10.1016/j.seppur.2016.01.043
  • Mphahlele, R. R., Fawole, O. A., Makunga, N. P., & Opara U. L. (2016). Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complementary and Alternative Medicine, 16, 143. doi:10.1186/s12906-016-1132-y
  • Naqvi, S. A., Khan, M. S., & Vohora, S. B. (1991). Antibacterial, antifungal, and anthelmintic investigations on Indian medicinal plants. Fitoterapia, 62, 221-228.
  • Okumuş, E., & Bakkalbaşı E. (2021). Determination of the bioaccessibility and antidiabetic properties of pomegranate peels. Journal of Food Measurement and Characterization, 15, 3357-3366. doi:10.1007/s11694-021-00921-x
  • Pyo, Y. H., Lee, T. C., Logendra, L., & Rosen, R. T. (2004). Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris Subspecies cycla) extracts. Food Chemistry, 85, 19-26. doi:10.1016/S0308-8146(03)00294-2
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. doi:10.1016/S0891-5849(98)00315-3
  • Rodriguez, O., Santacatalina, J., Simal, S., Garcia-Perez, J., Femenia, A., & Rosselleo, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphotungustic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
  • Tadera, K., Minami, Y., Takamatsu, K., & Matsuoka, T. (2006). Inhibition of α-glucosidase and α-amylase by flavonoids. Journal of Nutritional Science and Vitaminology, 52, 99-103. doi:10.3177/jnsv.52.149
  • Temiz, M. A. (2021). Antioxidant and antihyperglycemic activities of Scorzonera cinerea radical leaves in streptozocin-induced diabetic rats. Acta Pharmaceutica, 71(4), 603-617. doi:10.2478/acph-2021-0045
  • Tian, Y., Du, H., Qing, X., & Zhang, L. (2020). Effects of picking time and drying methods on contents of eight flavonoids and antioxidant activity of leaves of Diospyros lotus L. Journal of Food Measurement and Characterization, 14, 1461-1469. doi:10.1007/s11694-020-00396-2
  • Tsami, E., Krokida, M. K., & Drouzas, A. E. (1998). Effect of drying method on the sorption characteristics of model fruit powders. Journal of Food Engineering, 38, 381-392. doi:10.1016/S0260-8774(98)00130-7
  • Wetzstein, H. Y., Ravid, N., Wilkins, E., & Martinelli, A. P. (2011). A morphological and histological characterization of bisexual and male flower types in pomegranate. Journal of the American Society for Horticultural Science, 136(2), 83-92. doi:10.21273/JASHS.136.2.83
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555-559. doi:10.1016/S0308-8146(98)00102-2
APA OKUMUS E (2023). Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. , 113 - 120. 10.53433/yyufbed.1134273
Chicago OKUMUS Emine Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. (2023): 113 - 120. 10.53433/yyufbed.1134273
MLA OKUMUS Emine Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. , 2023, ss.113 - 120. 10.53433/yyufbed.1134273
AMA OKUMUS E Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. . 2023; 113 - 120. 10.53433/yyufbed.1134273
Vancouver OKUMUS E Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. . 2023; 113 - 120. 10.53433/yyufbed.1134273
IEEE OKUMUS E "Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes." , ss.113 - 120, 2023. 10.53433/yyufbed.1134273
ISNAD OKUMUS, Emine. "Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes". (2023), 113-120. https://doi.org/10.53433/yyufbed.1134273
APA OKUMUS E (2023). Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 113 - 120. 10.53433/yyufbed.1134273
Chicago OKUMUS Emine Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, no.1 (2023): 113 - 120. 10.53433/yyufbed.1134273
MLA OKUMUS Emine Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.28, no.1, 2023, ss.113 - 120. 10.53433/yyufbed.1134273
AMA OKUMUS E Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 28(1): 113 - 120. 10.53433/yyufbed.1134273
Vancouver OKUMUS E Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023; 28(1): 113 - 120. 10.53433/yyufbed.1134273
IEEE OKUMUS E "Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes." Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, ss.113 - 120, 2023. 10.53433/yyufbed.1134273
ISNAD OKUMUS, Emine. "Effect of Different Drying Processes on Antioxidant and Antidiabetic Properties of Pomegranate Press Wastes". Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (2023), 113-120. https://doi.org/10.53433/yyufbed.1134273