Yıl: 2022 Cilt: 59 Sayı: Ek 1 Sayfa Aralığı: 42 - 49 Metin Dili: Türkçe DOI: 10.29399/npa.28190 İndeks Tarihi: 08-05-2023

Diskoneksiyon Sendromları

Öz:
Bu derlemede Norman Geschwind tarafından Davranış Nörolojisi disiplinine kazandırılan ve her geçen gün yeni gelişmelerle heyecanını korumaya devam eden diskoneksiyon sendromlarının tarihçesinden ve kısaca bugününden bahsedilmiştir.
Anahtar Kelime:

Disconnection Syndromes

Öz:
In this review, the history and briefly the present of the disconnection syndromes, which were brought to the discipline of Behavioral Neurology by Norman Geschwind and continue to maintain its excitement with new developments every day, are mentioned.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Mesulam M-M. Fifty years of disconnexion syndromes and the Geschwind legacy. Brain. 2015;138(Pt 9):2791–2799. [Crossref]
  • 2. Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965;88(3):585–644. [Crossref]
  • 3. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88(2):237–294. [Crossref]
  • 4. Mesulam M-M. Principles of Behavioral Neurology. USA: Oxford University Press; 1985.
  • 5. Kuhn TS. The Structure of Scientific Revolutions. Chicago: University of Chicago Press; 1962. 264 p. https://www.lri.fr/~mbl/Stanford/CS477/papers/ Kuhn-SSR-2ndEd.pdf
  • 6. Mesulam M-M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28(5):597– 613. [Crossref]
  • 7. Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J. A. Barth.; 1909.
  • 8. Brodmann K, Gary LJ. Brodmann’s localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on cytoarchitectonics. New York, NY. Springer; 2006. xv, 298 p.p. https://www. appliedneuroscience.com/PDFs/Brodmann.pdf
  • 9. Simic G, Hof PR. In search of the definitive Brodmann’s map of cortical areas in human. J Comp Neurol. 2015;523(1):5–14. [Crossref]
  • 10. Exner S. Untersuchungen über Localisation der Functionen in der Grosshirnrinde des Menschen. Vienna: W. Braumuller; 1881. https://archive. org/details/untersuchungen00exne/page/n5/mode/2up
  • 11. Flechsig P. Gehirn und Seele. Leipzig: Verlag von Veit & Comp.;1896. [Crossref]
  • 12. Libet B, Gleason CA, Wright EW, Pearl DK. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain. 1983;106(Pt 3):623–642. [Crossref]
  • 13. Mesulam M-M. From sensation to cognition. Brain. 1998;121(Pt 6):1013– 1052. [Crossref]
  • 14. Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128(Pt 10):2224–2239. [Crossref]
  • 15. Broca P. Sur le siège de la faculté du langage articulé. Bulletins de la Socíété d’Anthropologie. 1865;6:377–393. [Crossref]
  • 16. Wernicke K. Das Aphasiche Symptomenkomplex. Breslau: Cohn and Weigart; 1874. https://archive.org/details/b24763445
  • 17. Kussmaul A. Die Storungen der Sprache. Leipzig: Vogel; 1877.
  • 18. Lichteim L. On Aphasia. Brain. 1885;7:433–484. [Crossref]
  • 19. Heilman KM. Aphasia and the diagram makers revisited: an update of information processing models. J Clin Neurol. 2006;2(3):149–162. [Crossref]
  • 20. Lissauer H. Ein Fall von Seelenblindheit nebst einem Beitrage zur Theorie derselben. Arch Psychiatr Nervenkr. 1890;21:222–270. [Crossref]
  • 21. Liepmann H. Das Krankheitsbild der Apraxie (motorische Asymbolie) auf Grund eines Falles von einseitiger Apraxie. Monatsschr Psychiatr Neurol. 1900;8:15–44, 102-132, 182-197. [Crossref]
  • 22. Brais B. Jean Martin Charcot and aphasia: treading the line between experimental physiology and pathological anatomy. Brain Lang. 1993;45(4):511–530. [Crossref]
  • 23. Déjérine J. Contibution a l’étude anatomo-pathologique et clinique des differentes variétés de cécité-verbale. Mém Soc Biol. 1892;4:61–90.
  • 24. Mesulam M-M. Principles of behavioral and cognitive neurology: Oxford University Press; 2000.
  • 25. Abivardi A, Bach DR. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Hum Brain Mapp. 2017;38(8):3927–3940. [Crossref]
  • 26. Mesulam M. Representation, inference, and transcendent encoding in neurocognitive networks of the human brain. Ann Neurol. 2008;64(4):367– 378. [Crossref]
  • 27. Damasio A. The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones. Neural Comput. 1989;1(1):123–132. [Crossref]
  • 28. Damasio AR. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition. 1989;33(1-2):25–62. [Crossref]
  • 29. Damasio AR, Damasio H. Cortical systems for retrieval of concrete knowledge: The convergence zone framework. In; Koch C, Davis JL, editors. Large-scale neuronal theories of the brain. The MIT Press; 1994. pp. 61–74.
  • 30. Bachelard G. The formation of the scientific mind: a contribution to a psychoanalysis of objective knowledge. Manchester: Clinamen Press Ltd; 2002. https://www.topoi.net/wp-content/uploads/2012/12/The-Formationof-the-Scientific-Mind.pdf
  • 31. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277–290. [Crossref]
  • 32. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16(1):55–61. [Crossref]
  • 33. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–215. [Crossref]
  • 34. Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE. A dualnetworks architecture of top-down control. Trends Cogn Sci. 2008;12(3):99– 105. [Crossref]
  • 35. Wang D, Buckner RL, Liu H. Functional specialization in the human brain estimated by intrinsic hemispheric interaction. J Neurosci. 2014;34(37):12341–12352. [Crossref]
  • 36. Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44(8):1105–1132. [Crossref]
  • 37. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ ve ark. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain. 2007;130(Pt 3):630– 653. [Crossref]
  • 38. Oishi K, Lyketsos CG. Alzheimer’s disease and the fornix. Front Aging Neurosci. 2014;6:241. [Crossref]
  • 39. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain. 2013;136(Pt 6):1692–1707. [Crossref]
  • 40. Catani M, Mesulam M. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex. 2008;44(8):953– 961. [Crossref]
  • 41. Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev. 2018;92:104–127. [Crossref]
  • 42. Wang Y, Olson IR. The Original Social Network: White Matter and Social Cognition. Trends Cogn Sci. 2018;22(6):504–516. [Crossref]
  • 43. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13(1):5–14. [Crossref]
  • 44. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–541. [Crossref]
  • 45. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage. 1998;7(2):119–132. [Crossref]
  • 46. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH ve ark. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol. 2001;22(7):1326–1333. http:// www.ajnr.org/content/22/7/1326.long
  • 47. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002;15(4):247–262. [Crossref]
  • 48. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–258. [Crossref]
  • 49. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006;103(26):10046–10051. [Crossref]
  • 50. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M ve ark. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–1165. [Crossref]
  • 51. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ ve ark. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb Cortex. 2018;28(9):3095–3114. [Crossref]
  • 52. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–2345. [Crossref]
  • 53. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012;108(8):2242–2263. [Crossref]
  • 54. Kumar VJ, van Oort E, Scheffler K, Beckmann CF, Grodd W. Functional anatomy of the human thalamus at rest. Neuroimage. 2017;147:678–691. [Crossref]
  • 55. Tian Y, Margulies DS, Breakspear M, Zalesky A. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23(11):1421–1432. [Crossref]
  • 56. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101(13):4637–4642. [Crossref]
  • 57. Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S ve ark. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry. 2010;67(6):584–587. [Crossref]
  • 58. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D’Angelo G ve ark. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. J Neurosci. 2010;30(50):17035–17040. [Crossref]
  • 59. Seeley WW. Anterior insula degeneration in frontotemporal dementia. Brain Struct Funct. 2010;214(5-6):465–475. [Crossref]
  • 60. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD ve ark. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain. 2010;133(Pt 5):1352–1367. [Crossref]
  • 61. Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M. Networkselective vulnerability of the human cerebellum to Alzheimer’s disease and frontotemporal dementia. Brain. 2016;139(Pt 5):1527–1538. [Crossref]
  • 62. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42– 52. [Crossref]
  • 63. Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL ve ark. Decreased interhemispheric functional connectivity in autism. Cereb Cortex. 2011;21(5):1134–1146. [Crossref]
  • 64. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H ve ark. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–437. [Crossref]
  • 65. Damaraju E, Allen EA, Belger A, Ford JM, McEwen S, Mathalon DH ve ark. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. Neuroimage Clin. 2014;5:298–308. [Crossref]
  • 66. Guye M, Bartolomei F, Ranjeva J-P. Imaging structural and functional connectivity: towards a unified definition of human brain organization? Curr Opin Neurol. 2008;21(4):393–403. [Crossref]
  • 67. Moody JF, Adluru N, Alexander AL, Field AS. The Connectomes: Methods of White Matter Tractography and Contributions of Resting State fMRI. Semin Ultrasound CT MR. 2021;42(5):507–522. [Crossref]
  • 68. Durusoy G, Yıldırım Z, Dal DY, Ulasoglu-Yildiz C, Kurt E, Bayır G ve ark. B-Tensor: Brain Connectome Tensor Factorization for Alzheimer’s Disease. IEEE J Biomed Health Inform. 2021;25(5):1591–1600. [Crossref]
  • 69. Althusser L. Contradiction and overdetermination. In: Althusser L, For Marx. Paris: Librairie François Maspero; 1969. http://www.marx2mao.com/Other/ FM65i.html
  • 70. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53(1):1–15. [Crossref]
APA Gürvit H, Samanci B (2022). Diskoneksiyon Sendromları. , 42 - 49. 10.29399/npa.28190
Chicago Gürvit Hakan,Samanci Bedia Diskoneksiyon Sendromları. (2022): 42 - 49. 10.29399/npa.28190
MLA Gürvit Hakan,Samanci Bedia Diskoneksiyon Sendromları. , 2022, ss.42 - 49. 10.29399/npa.28190
AMA Gürvit H,Samanci B Diskoneksiyon Sendromları. . 2022; 42 - 49. 10.29399/npa.28190
Vancouver Gürvit H,Samanci B Diskoneksiyon Sendromları. . 2022; 42 - 49. 10.29399/npa.28190
IEEE Gürvit H,Samanci B "Diskoneksiyon Sendromları." , ss.42 - 49, 2022. 10.29399/npa.28190
ISNAD Gürvit, Hakan - Samanci, Bedia. "Diskoneksiyon Sendromları". (2022), 42-49. https://doi.org/10.29399/npa.28190
APA Gürvit H, Samanci B (2022). Diskoneksiyon Sendromları. Nöropsikiyatri Arşivi, 59(Ek 1), 42 - 49. 10.29399/npa.28190
Chicago Gürvit Hakan,Samanci Bedia Diskoneksiyon Sendromları. Nöropsikiyatri Arşivi 59, no.Ek 1 (2022): 42 - 49. 10.29399/npa.28190
MLA Gürvit Hakan,Samanci Bedia Diskoneksiyon Sendromları. Nöropsikiyatri Arşivi, vol.59, no.Ek 1, 2022, ss.42 - 49. 10.29399/npa.28190
AMA Gürvit H,Samanci B Diskoneksiyon Sendromları. Nöropsikiyatri Arşivi. 2022; 59(Ek 1): 42 - 49. 10.29399/npa.28190
Vancouver Gürvit H,Samanci B Diskoneksiyon Sendromları. Nöropsikiyatri Arşivi. 2022; 59(Ek 1): 42 - 49. 10.29399/npa.28190
IEEE Gürvit H,Samanci B "Diskoneksiyon Sendromları." Nöropsikiyatri Arşivi, 59, ss.42 - 49, 2022. 10.29399/npa.28190
ISNAD Gürvit, Hakan - Samanci, Bedia. "Diskoneksiyon Sendromları". Nöropsikiyatri Arşivi 59/Ek 1 (2022), 42-49. https://doi.org/10.29399/npa.28190