Yıl: 2022 Cilt: 8 Sayı: 4 Sayfa Aralığı: 659 - 674 Metin Dili: İngilizce DOI: 10.17515/resm2022.443ma0607 İndeks Tarihi: 08-05-2023

Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites

Öz:
In this study, influence of multi-walled carbon nanotubes (MWCNTs) on tensile and flexural behaviour of 15% short glass fiber (SGF) reinforced Polyamide 66 (PA 66/15SGF) and 30% short glass fiber reinforced Polyamide 66 (PA 66/30SGF) is investigated. Test specimens composed of neat PA 66, PA 66/15SGF, PA 66/30SGF and PA 66/30SGF/MWCNTs are produced using plastic injection moulding machine; and their tensile and flexural properties are characterized. The effects of MWCNTs contents on the micro-structure and morphology of the composites were investigated by using a scanning electron microscope (SEM), fourier transform infrared spectroscopy analysis (FTIR) and optical microscopy (OM). Mechanical analyses reveal that neat PA 66 exhibits the lowest elastic modulus, 2.11 GPa, and tensile strength, 60.61 MPa, while the highest tensile modulus, 4.69 GPa, and strength, 87.05 MPa, are exhibited by PA 66/30SGF/MWCNT and PA 66/30SGF, respectively. In other words, with the addition of MWCNT, tensile strength of PA 66/30SGF decreases by 13.4 % whereas the elastic modulus increases by nearly 4.7 %. In addition, flexural test results shows that the integration of MWCNTs improves the flexural strength and flexural modulus of PA 66/30SGF by 1% and 12%, respectively.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Hv D. Processing Techniques of polymer matrix composites-A review. International Journal Of Engineering Research and General Science. 2016;Volume 4.
  • [2] Yern Chee C, Chuah CH, Ching KY, Luqman Chuah A, Rahman A. Applications of thermoplastic-based blends. 2017. p. 111-29. https://doi.org/10.1016/B978-0-08- 100408-1.00005-4
  • [3] Gilbert M. Chapter 1 - Plastics Materials: Introduction and Historical Development. In: Gilbert M, editor. Brydson's Plastics Materials (Eighth Edition): Butterworth- Heinemann; 2017. p. 1-18.
  • [4] Awaja F, Zhang S, Tripathi M, Nikiforov A, Pugno N. Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair. Progress in Materials Science. 2016;83:536-73. https://doi.org/10.1016/j.pmatsci.2016.07.007
  • [5] Rajak DK, Pagar DD, Kumar R, Pruncu CI. Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology. 2019;8:6354-74. https://doi.org/10.1016/j.jmrt.2019.09.068
  • [6] Xanthos M. Polymers and Polymer Composites. Functional Fillers for Plastics2005. p. 1-16. https://doi.org/10.1002/3527605096.ch1
  • [7] Chow WS, Mohd Ishak ZA. Polyamide blend-based nanocomposites: A review. Express Polymer Letters. 2015;9:211-32. https://doi.org/10.3144/expresspolymlett.2015.22
  • [8] Vagholkar P. Nylon (Chemistry, Properties and Uses). International Journal of Scientific Research. 2016;5:349-51.
  • [9] Autay R, Missaoui S, Mars J, Dammak F. Mechanical and tribological study of short glass fiber-reinforced PA 66. Polymers and Polymer Composites. 2019;27:587-96. https://doi.org/10.1177/0967391119853956
  • [10] Çuvalci H, Erbay K, İpek H. Investigation of the Effect of Glass Fiber Content on the Mechanical Properties of Cast Polyamide. Arabian Journal for Science and Engineering. 2014;39:9049-56. https://doi.org/10.1007/s13369-014-1409-8
  • [11] Ho Ming H, Hwang Jiun R, Wang Pin N, Kuo Shun C. Study on Tensile Properties of Nylon 66 Reinforced Composites. Proceedings of the 2016 International Conference on Education, Management, Computer and Society: Atlantis Press; 2016. p. 1660-3.
  • [12] Javangula S, Ghorashi B, Draucker CC. Mixing of glass fibers with nylon 6,6. Journal of Materials Science. 1999;34:5143-51. https://doi.org/10.1023/A:1004777520458
  • [13] Kim J-W, Kim H-S, Lee D-G. Tensile Strength of Glass Fiber-Reinforced Plastic by Fiber Orientation and Fiber Content Variations. International Journal of Modern Physics: Conference Series. 2012;06:640-5. https://doi.org/10.1142/S201019451200390X
  • [14] Lingesh BV, Rudresh BM, Ravikumar BN. Effect of Short Glass Fibers on Mechanical Properties of Polyamide66 and Polypropylene (PA66/PP) Thermoplastic Blend Composites. Procedia Materials Science. 2014;5:1231-40. https://doi.org/10.1016/j.mspro.2014.07.434
  • [15] Nuruzzaman DM, Iqbal AKMA, Oumer AN, Ismail NM, Basri S. Experimental investigation on the mechanical properties of glass fiber reinforced nylon. IOP Conference Series: Materials Science and Engineering. 2016;114. https://doi.org/10.1088/1757-899X/114/1/012118
  • [16] Srivastava VK, Lal S. Mechanical properties of E-glass fibre reinforced nylon 6/6 resin composites. Journal of Materials Science. 1991;26:6693-8. https://doi.org/10.1007/BF02402662
  • [17] Ünal H, Ermis K. Determination of mechanical performance of glass fiber reinforced and elastomer filled polyamide 6 composites. International Advanced Researches and Engineering Journal. 2021;5:405-11. https://doi.org/10.35860/iarej.934740
  • [18] Bernasconi A, Cosmi F. Analysis of the dependence of the tensile behaviour of a short fibre reinforced polyamide upon fibre volume fraction, length and orientation. Procedia Engineering. 2011;10:2129-34. https://doi.org/10.1016/j.proeng.2011.04.352
  • [19] Sato N, Kurauchi T, Sato S, Kamigaito O. Reinforcing Mechanism by Small Diameter Fiber in Short Fiber Composite. Journal of Composite Materials. 1988;22:850-73. https://doi.org/10.1177/002199838802200905
  • [20] Thomason JL. Structure-property relationships in glass reinforced polyamide, part 2: The effects of average fiber diameter and diameter distribution. Polymer Composites. 2007;28:331-43. https://doi.org/10.1002/pc.20260
  • [21] Thomason JL. Structure-property relationships in glass-reinforced polyamide, part 1: The effects of fiber content. Polymer Composites. 2006;27:552-62. https://doi.org/10.1002/pc.20226
  • [22] Güllü A, Özdemir A, Özdemir E. Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics. Materials & Design. 2006;27:316-23. https://doi.org/10.1016/j.matdes.2004.10.013
  • [23] Zainudin ES, Sapuan S, Imihezri SSS. A Review of the Effect of Moulding Parameters on the Performance of Polymeric Composite Injection Moulding. Turkish Journal of Engineering and Environmental Sciences. 2006;30:23-34.
  • [24] Baughman R, Zakhidov A, Heer W. Carbon Nanotubes-The Route Toward Applications. Science (New York, NY). 2002;297:787-92. https://doi.org/10.1126/science.1060928
  • [25] Coleman JN, Khan U, Gun'ko YK. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Advanced Materials. 2006;18:689-706. https://doi.org/10.1002/adma.200501851
  • [26] Zhang C, Wu L, de Perrot M, Zhao X. Carbon Nanotubes: A Summary of Beneficial and Dangerous Aspects of an Increasingly Popular Group of Nanomaterials. Frontiers in Oncology. 2021;11. https://doi.org/10.3389/fonc.2021.693814
  • [27] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603-5. https://doi.org/10.1038/363603a0
  • [28] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56-8. https://doi.org/10.1038/354056a0
  • [29] Yu M-F, Lourie O, Dyer M, Moloni K, Kelly T, Ruoff R. Strength and Breaking Mechanism of Multiwall Carbon Nanotubes Under Tensile Load. Science. 2000;287:637-40. https://doi.org/10.1126/science.287.5453.637
  • [30] Salvetat J-P, Briggs GAD, Bonard J-M, Bacsa RR, Kulik AJ, Stöckli T, et al. Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Physical Review Letters. 1999;82:944-7. https://doi.org/10.1103/PhysRevLett.82.944
  • [31] Du JH. The present status and key problems of carbon nanotube based polymer composites. Express Polymer Letters - EXPRESS POLYM LETT. 2007;1:253-73. https://doi.org/10.3144/expresspolymlett.2007.39
  • [32] Sahoo N, Rana S, Cho J, Li L, Chan SH. Polymer Nanocomposites Based on Functionalized Carbon Nanotubes. Progress in Polymer Science. 2010;35:837-67. https://doi.org/10.1016/j.progpolymsci.2010.03.002
  • [33] Shankar S, Rhim J-W. Polymer Nanocomposites for Food Packaging Applications. 2016. p. 29-55. https://doi.org/10.1002/9781118542316.ch3
  • [34] Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, et al. Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing-Structure- Performance Relationship. Materials. 2013;6:2543-77. https://doi.org/10.3390/ma6062543
  • [35] Du JH, Bai J, Cheng HM. The present status and key problems of carbon nanotube based polymer composites. Express Polymer Letters. 2007;1:253-73. https://doi.org/10.3144/expresspolymlett.2007.39
  • [36] Arash B, Wang Q, Varadan VK. Mechanical properties of carbon nanotube/polymer composites. Sci Rep. 2014;4:6479. https://doi.org/10.1038/srep06479
  • [37] Chen T, Liu H, Wang X, Zhang H, Zhang X. Properties and Fabrication of PA66/Surface- Modified Multi-Walled Nanotubes Composite Fibers by Ball Milling and Melt-Spinning. Polymers (Basel). 2018;10. https://doi.org/10.3390/polym10050547
  • [38] Coleman JN, Khan U, Blau WJ, Gun'ko YK. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon. 2006;44:1624-52. https://doi.org/10.1016/j.carbon.2006.02.038
  • [39] Hassani J A, Ishak Z, Mohamed A. Preparation and characterization of polyamide 6 nanocomposites using MWCNTs based on bimetallic Co-Mo/MgO catalyst. Express Polymer Letters. 2013;8:177-86. https://doi.org/10.3144/expresspolymlett.2014.21
  • [40] Jin F-L, Park S-J. A review of the preparation and properties of carbon nanotubesreinforced polymer compositess. Carbon letters. 2011;12:57-69. https://doi.org/10.5714/CL.2011.12.2.057
  • [41] Khan W, Sharma R, Saini P. Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications. Carbon Nanotubes - Current Progress of their Polymer Composites2016. https://doi.org/10.5772/62497
  • [42] Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI. Tuning the mechanical properties of SWNT/nylon 6,10 composites with flexible spacers at the interface. Nano Lett. 2007;7:1178-85. https://doi.org/10.1021/nl062868e
  • [43] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science. 2010;35:357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  • [44] Tarfaoui M, Lafdi K, El Moumen A. Mechanical properties of carbon nanotubes based polymer composites. Composites Part B: Engineering. 2016;103:113-21. https://doi.org/10.1016/j.compositesb.2016.08.016
  • [45] Zabegaeva ON, Sapozhnikov DA, Buzin MI, Krestinin AV, Kotelnikov VA, Baiminov BA, et al. Nylon-6 and single-walled carbon nanotubes polyamide composites. High Performance Polymers. 2016;29:411-21. https://doi.org/10.1177/0954008316645848
  • [46] Zhang J, Gao X, Zhang X, Liu H, Zhang H, Zhang X. Polyamide 66 and aminofunctionalized multi-walled carbon nanotube composites and their melt-spun fibers. Journal of Materials Science. 2019;54:11056-68. https://doi.org/10.1007/s10853- 019-03619-0
  • [47] Su X, Wang R, Li X, Araby S, Kuan H-C, Naeem M, et al. A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. Nano Materials Science. 2021. https://doi.org/10.1016/j.nanoms.2021.08.003
  • [48] Khan FSA, Mubarak NM, Khalid M, Khan MM, Tan YH, Walvekar R, et al. Comprehensive review on carbon nanotubes embedded in different metal and polymer matrix: fabrications and applications. Critical Reviews in Solid State and Materials Sciences. 2021:1-28. https://doi.org/10.1080/10408436.2021.1935713
  • [49] Miyagawa H, Misra M, Mohanty AK. Mechanical properties of carbon nanotubes and their polymer nanocomposites. J Nanosci Nanotechnol. 2005;5:1593-615. https://doi.org/10.1166/jnn.2005.181
  • [50] Hiremath A, Murthy AA, Thipperudrappa S, K N B. Nanoparticles Filled Polymer Nanocomposites: A Technological Review. Cogent Engineering. 2021;8:1991229. https://doi.org/10.1080/23311916.2021.1991229
  • [51] Gorga RE, Lau KKS, Gleason KK, Cohen RE. The importance of interfacial design at the carbon nanotube/polymer composite interface. Journal of Applied Polymer Science. 2006;102:1413-8. https://doi.org/10.1002/app.24272
  • [52] Gupta AK, Harsha SP. Effect of crack and determination of fracture energy of carbon nanotube-reinforced polymer composites. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems. 2014;229:110-6. https://doi.org/10.1177/1740349914531758
  • [53] Kuronuma Y, Shindo Y, Takeda T, Narita F. Fracture behaviour of cracked carbon nanotube-based polymer composites: Experiments and finite element simulations. Fatigue & Fracture of Engineering Materials & Structures. 2010;33:87-93. https://doi.org/10.1111/j.1460-2695.2009.01419.x
  • [54] Kuronuma Y, Shindo Y, Takeda T, Narita F. Crack growth characteristics of carbon nanotube-based polymer composites subjected to cyclic loading. Engineering Fracture Mechanics. 2011;78:3102-10. https://doi.org/10.1016/j.engfracmech.2011.09.006
  • [55] Shindo Y, Kuronuma Y, Takeda T, Narita F, Fu S-Y. Electrical resistance change and crack behavior in carbon nanotube/polymer composites under tensile loading. Composites Part B: Engineering. 2012;43:39-43. https://doi.org/10.1016/j.compositesb.2011.04.028
  • [56] Takeda T, Shindo Y, Naraoka F, Kuronuma Y, Narita F. Crack and Electrical Resistance Behaviors of Carbon Nanotube-Based Polymer Composites under Mixed-Mode I/II Loading. Materials Transactions. 2013;54:1105-9. https://doi.org/10.2320/matertrans.M2013080
  • [57] Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-Walled Carbon Nanotube- Polymer Composites: Strength and Weakness. Advanced Materials. 2000;12:750-3. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AIDADMA750> 3.0.CO;2-6
  • [58] Liu, Phang IY, Shen L, Chow SY, Zhang W-D. Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites. Macromolecules. 2004;37:7214-22. https://doi.org/10.1021/ma049132t
  • [59] Ferreira T, Paiva MC, Pontes AJ. Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. Journal of Polymer Research. 2013;20. https://doi.org/10.1007/s10965-013-0301-7
  • [60] Chopra S, Deshmukh KA, Deshmukh AD, Peshwe DR. Functionalization and Meltcompounding of MWCNTs in PA-6 for Tribological Applications. IOP Conference Series: Materials Science and Engineering. 2018;346. https://doi.org/10.1088/1757- 899X/346/1/012005
  • [61] Kartel M, Sementsov Y, Mahno S, Trachevskiy V, Bo W. Polymer Composites Filled with Multiwall Carbon Nanotubes. Universal Journal of Materials Science. 2016;4:23-31. https://doi.org/10.13189/ujms.2016.040202
  • [62] Mahato KK, Rathore DK, Prusty RK, Dutta K, Ray BC. Tensile behavior of MWCNT enhanced glass fiber reinforced polymeric composites at various crosshead speeds. IOP Conference Series: Materials Science and Engineering. 2017;178. https://doi.org/10.1088/1757-899X/178/1/012006
  • [63] Nguyen-Tran HD, Hoang VT, Do VT, Chun DM, Yum YJ. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide- 6/Polypropylene Composites for Lightweight Automotive Parts. Materials (Basel). 2018;11. https://doi.org/10.3390/ma11030429
  • [64] Lakkur Munirajappa M, Harijan Basavaraju R. Microstructural characterization of short glass fiber and PAN based carbon fiber reinforced nylon 6 polymer composites. Polymer Engineering & Science. 2018;58:1428-37. https://doi.org/10.1002/pen.24737
  • [65] Qiu L, Chen Y, Yang Y, Xu L, Liu X. A Study of Surface Modifications of Carbon Nanotubes on the Properties of Polyamide 66/Multiwalled Carbon Nanotube Composites. Journal of Nanomaterials. 2013;2013. https://doi.org/10.1155/2013/252417
  • [66] Navarro-Pardo F, Martínez-Hernández AL, Castaño VM, Rivera-Armenta JL, Medellín- Rodríguez FJ, Martínez-Barrera G, et al. Influence of 1D and 2D Carbon Fillers and Their Functionalisation on Crystallisation and Thermomechanical Properties of Injection Moulded Nylon 6,6 Nanocomposites. Journal of Nanomaterials. 2014;2014:1-13. https://doi.org/10.1155/2014/670261
  • [67] Demircan O, Al-darkazali A, İnanç İ, Eskizeybek V. Investigation of the effect of CNTs on the mechanical properties of LPET/glass fiber thermoplastic composites. Journal of Thermoplastic Composite Materials. 2020;33:1652-73. https://doi.org/10.1177/0892705719833105
  • [68] Hsiung HM, Ren HJ, Ning WP, Chi KS. Study on Tensile Properties of Nylon 66 Reinforced Composites. Atlantis Press; 2016. p. 1660-3. https://doi.org/10.2991/emcs-16.2016.415
  • [69] Jin J, Zhang L, Chen W, Li C-Z. Synthesis of glass fiber-multiwall carbon nanotube hybrid structures for high-performance conductive composites. Polymer Composites. 2013;34:1313-20. https://doi.org/10.1002/pc.22544
  • [70] Koilraj TT, Kalaichelvan K. Experimental Study on Mechanical Properties of PA66 Blended with MWNTs. Applied Mechanics and Materials. 2015;766-767:383-8. https://doi.org/10.4028/www.scientific.net/AMM.766-767.383
  • [71] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters. 2000;76:2868. https://doi.org/10.1063/1.126500
  • [72] Puch F, Hopmann C. Morphology and tensile properties of unreinforced and short carbon fibre reinforced Nylon 6/multiwalled carbon nanotube-composites. Polymer. 2014;55:3015-25. https://doi.org/10.1016/j.polymer.2014.04.052
  • [73] Banerjee J, Dutta K. Melt mixed carbon nanotubes/polymer nanocomposites. Polymer Composites. 2019;40:4473-88. https://doi.org/10.1002/pc.25334
APA demircan ö, Uzunoğlu F, REZAEI ANSAROUDI N (2022). Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. , 659 - 674. 10.17515/resm2022.443ma0607
Chicago demircan özgür,Uzunoğlu Fatma Burcu,REZAEI ANSAROUDI NASER Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. (2022): 659 - 674. 10.17515/resm2022.443ma0607
MLA demircan özgür,Uzunoğlu Fatma Burcu,REZAEI ANSAROUDI NASER Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. , 2022, ss.659 - 674. 10.17515/resm2022.443ma0607
AMA demircan ö,Uzunoğlu F,REZAEI ANSAROUDI N Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. . 2022; 659 - 674. 10.17515/resm2022.443ma0607
Vancouver demircan ö,Uzunoğlu F,REZAEI ANSAROUDI N Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. . 2022; 659 - 674. 10.17515/resm2022.443ma0607
IEEE demircan ö,Uzunoğlu F,REZAEI ANSAROUDI N "Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites." , ss.659 - 674, 2022. 10.17515/resm2022.443ma0607
ISNAD demircan, özgür vd. "Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites". (2022), 659-674. https://doi.org/10.17515/resm2022.443ma0607
APA demircan ö, Uzunoğlu F, REZAEI ANSAROUDI N (2022). Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials, 8(4), 659 - 674. 10.17515/resm2022.443ma0607
Chicago demircan özgür,Uzunoğlu Fatma Burcu,REZAEI ANSAROUDI NASER Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials 8, no.4 (2022): 659 - 674. 10.17515/resm2022.443ma0607
MLA demircan özgür,Uzunoğlu Fatma Burcu,REZAEI ANSAROUDI NASER Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials, vol.8, no.4, 2022, ss.659 - 674. 10.17515/resm2022.443ma0607
AMA demircan ö,Uzunoğlu F,REZAEI ANSAROUDI N Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials. 2022; 8(4): 659 - 674. 10.17515/resm2022.443ma0607
Vancouver demircan ö,Uzunoğlu F,REZAEI ANSAROUDI N Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites. Research on Engineering Structures and Materials. 2022; 8(4): 659 - 674. 10.17515/resm2022.443ma0607
IEEE demircan ö,Uzunoğlu F,REZAEI ANSAROUDI N "Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites." Research on Engineering Structures and Materials, 8, ss.659 - 674, 2022. 10.17515/resm2022.443ma0607
ISNAD demircan, özgür vd. "Influence of multi-walled carbon nanotubes on tensile and flexural properties of polyamide 66/short glass fiber composites". Research on Engineering Structures and Materials 8/4 (2022), 659-674. https://doi.org/10.17515/resm2022.443ma0607