Yıl: 2022 Cilt: 8 Sayı: 4 Sayfa Aralığı: 799 - 809 Metin Dili: İngilizce DOI: 10.17515/resm2022.415st0308tn İndeks Tarihi: 08-05-2023

On the effect of numerical parameters in finite element through thickness modeling for springback prediction

Öz:
The usage of advanced high strength steels (AHSS) presents important advantages in the reduction of the car body weight. However, these steels exhibit high springback behavior and causes to several problems in the manufacturing. Therefore, the prediction of the springback for AHSS is an important engineering task. In this study, the effect of numerical parameters in finite element through thickness modelling for springback prediction was investigated. U-draw bending process of transformation-induced plasticity-TWIP980 steel was performed as benchmark study. In the study, both shell and solid elements were taken into account. Number of integration points for shell elements and number of elements along the thickness direction for solid elements were evaluated. As a result, 5 integration points were determined as optimum value for shell elements however similar predictions results were obtained between the shell and solid elements.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Wagoner RH, Lim H, Lee M-G. Advanced issues in springback. International Journal of Plasticity, 2013; 45: 3-20. https://doi.org/10.1016/j.ijplas.2012.08.006
  • [2] Zhang L, Li, H, Bian T, Wu C, Gao Y, Lei C. Advances and challenges on springback control for creep age forming of aluminum alloy. Chinese Journal of Aeronautics, 2021. https://doi.org/10.1016/j.cja.2021.10.019
  • [3] Wang H, Zhou J, Zhao TS, Liu LZ, Liang Q. Multiple-iteration springback compensation of tailor welded blanks during stamping forming process. Materials & Design, 2016; 102: 247-254. https://doi.org/10.1016/j.matdes.2016.04.032
  • [4] Jianjun WU, Zhang Z. An improved procedure for manufacture of 3D tubes with springback concerned in flexible bending process. Chinese Journal of Aeronautics, 2021; 34(11): 267-276. https://doi.org/10.1016/j.cja.2020.05.036
  • [5] Navarro M, Ivorra S, Varona, FB. Parametric finite element analysis of punching shear behaviour of RC slabs reinforced with bolts. Computers & Structures, 2020; 228, 106147. https://doi.org/10.1016/j.compstruc.2019.106147
  • [6] Greve L, van de Weg B. Surrogate modeling of parametrized finite element simulations with varying mesh topology using recurrent neural networks. Array; 2022; 14: 100137. https://doi.org/10.1016/j.array.2022.100137
  • [7] Jiang HJ, Ren YX, Lian JW, Xu WL, Gao NH., Wang XG, Jia CS. A new predicting model study on U-shaped stamping springback behavior subjected to steady-state temperature field. Journal of Manufacturing Processes, 2022; 76: 21-33. https://doi.org/10.1016/j.jmapro.2022.02.004
  • [8] Yoshida F. Description of elastic-plastic stress-strain transition in cyclic plasticity and its effect on springback prediction. International Journal of Material Forming, 2022; 15(2): 1-17. https://doi.org/10.1007/s12289-022-01651-1
  • [9] Solfronk P, Sobotka J, Koreček D. Effect of the Computational Model and Mesh Strategy on the Springback Prediction of the Sandwich Material. Machines, 2022; 10(2): 114. https://doi.org/10.3390/machines10020114
  • [10] Lee SW, Yang DY. An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. Journal of Materials Processing Technology, 1998; 80-81: 60-67. https://doi.org/10.1016/S0924- 0136(98)00177-0
  • [11] Xu WL, Ma CH, Li CH, Feng WJ. Sensitive factors in springback simulation for sheet metal forming. Journal of Materials Processing Technology, 2004; 151: 217-222. https://doi.org/10.1016/j.jmatprotec.2004.04.044
  • [12] Chen X, Shi M, Zhu X, Du C, Xie ZC, Xu S, Wang C-T. Springback prediction improvement using new simulation technologies. SAE Technical Paper Series, 2009. https://doi.org/10.4271/2009-01-0981
  • [13] Yoshida F, Uemori T. A model of large-strain cyclic plasticity describing the Bauschinger effect and work hardening stagnation. International Journal of Plasticity, 2002; 18; 661-686. https://doi.org/10.1016/S0749-6419(01)00050-X
  • [14] Yao H, Liu SD, Du C, Hu Y. Techniques to improve springback prediction accuracy using dynamic explicit FEA codes. SAE Technical Paper Series, 2002. https://doi.org/10.4271/2002-01-0159
  • [15] Trzepiecinski T, Lemu HG. Effect of computational parameters on springback prediction by numerical simulation. Metals, 2017; 7: 1-14. https://doi.org/10.3390/met7090380
  • [16] Firat M, Mete OH, Kocabicak U, Ozsoy M. Stamping process design using FEA in conjuction with orthogonal regression. Finite Elements in Analysis and Design, 2010; 46; 992-1000. https://doi.org/10.1016/j.finel.2010.07.005
  • [17] Esener E, Ercan S, Firat M. (2014) A Sensitivity analysis by using design of experiment and its application in stamping. An International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, June, 2008.
  • [18] Grassel O, Kruger L, Frommeyer G, Meyer LW. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. International Journal of Plasiticity, 2000; 16: 1391-1409. https://doi.org/10.1016/S0749-6419(00)00015-2
  • [19] Makinouchi A, Nakamachi E, Onate E, Wagoner R. Numerical simulation of 3-D sheet metal forming proceses verification of simulation with experiment. Proceedings of the 2nd International Conference Numisheet'93, Isehara, Japan, September, 1993.
  • [20] Choi J, Lee J, Bong HK, Lee M-G, Barlat F. Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending. International Journal of Solids and Structures, 2018; 151: 152-164. https://doi.org/10.1016/j.ijsolstr.2017.09.030
  • [21] Marc (2018) 2008.1 Volume A: Theory and User Manual.
  • [22] Marc (2018) 2008.1 Volume B: Element Library.
  • [23] Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proc. Soc. London A, 1948; 193A: 291-297. https://doi.org/10.1098/rspa.1948.0045
  • [24] Nakamachi E. Guide to the benchmark test - simulation and experiment. In: Makinochi A, Nakamachi E, Onate E, Wagoner RH, editors. Numisheet93. Tokyo: The Institute of Physical and Chemical Research, 1993; 32-39.
APA Sener B, AKSEN T, ESENER E, FIRAT M (2022). On the effect of numerical parameters in finite element through thickness modeling for springback prediction. , 799 - 809. 10.17515/resm2022.415st0308tn
Chicago Sener Bora,AKSEN Toros Arda,ESENER Emre,FIRAT MEHMET On the effect of numerical parameters in finite element through thickness modeling for springback prediction. (2022): 799 - 809. 10.17515/resm2022.415st0308tn
MLA Sener Bora,AKSEN Toros Arda,ESENER Emre,FIRAT MEHMET On the effect of numerical parameters in finite element through thickness modeling for springback prediction. , 2022, ss.799 - 809. 10.17515/resm2022.415st0308tn
AMA Sener B,AKSEN T,ESENER E,FIRAT M On the effect of numerical parameters in finite element through thickness modeling for springback prediction. . 2022; 799 - 809. 10.17515/resm2022.415st0308tn
Vancouver Sener B,AKSEN T,ESENER E,FIRAT M On the effect of numerical parameters in finite element through thickness modeling for springback prediction. . 2022; 799 - 809. 10.17515/resm2022.415st0308tn
IEEE Sener B,AKSEN T,ESENER E,FIRAT M "On the effect of numerical parameters in finite element through thickness modeling for springback prediction." , ss.799 - 809, 2022. 10.17515/resm2022.415st0308tn
ISNAD Sener, Bora vd. "On the effect of numerical parameters in finite element through thickness modeling for springback prediction". (2022), 799-809. https://doi.org/10.17515/resm2022.415st0308tn
APA Sener B, AKSEN T, ESENER E, FIRAT M (2022). On the effect of numerical parameters in finite element through thickness modeling for springback prediction. Research on Engineering Structures and Materials, 8(4), 799 - 809. 10.17515/resm2022.415st0308tn
Chicago Sener Bora,AKSEN Toros Arda,ESENER Emre,FIRAT MEHMET On the effect of numerical parameters in finite element through thickness modeling for springback prediction. Research on Engineering Structures and Materials 8, no.4 (2022): 799 - 809. 10.17515/resm2022.415st0308tn
MLA Sener Bora,AKSEN Toros Arda,ESENER Emre,FIRAT MEHMET On the effect of numerical parameters in finite element through thickness modeling for springback prediction. Research on Engineering Structures and Materials, vol.8, no.4, 2022, ss.799 - 809. 10.17515/resm2022.415st0308tn
AMA Sener B,AKSEN T,ESENER E,FIRAT M On the effect of numerical parameters in finite element through thickness modeling for springback prediction. Research on Engineering Structures and Materials. 2022; 8(4): 799 - 809. 10.17515/resm2022.415st0308tn
Vancouver Sener B,AKSEN T,ESENER E,FIRAT M On the effect of numerical parameters in finite element through thickness modeling for springback prediction. Research on Engineering Structures and Materials. 2022; 8(4): 799 - 809. 10.17515/resm2022.415st0308tn
IEEE Sener B,AKSEN T,ESENER E,FIRAT M "On the effect of numerical parameters in finite element through thickness modeling for springback prediction." Research on Engineering Structures and Materials, 8, ss.799 - 809, 2022. 10.17515/resm2022.415st0308tn
ISNAD Sener, Bora vd. "On the effect of numerical parameters in finite element through thickness modeling for springback prediction". Research on Engineering Structures and Materials 8/4 (2022), 799-809. https://doi.org/10.17515/resm2022.415st0308tn