Yıl: 2023 Cilt: 43 Sayı: 1 Sayfa Aralığı: 95 - 106 Metin Dili: İngilizce DOI: 10.47480/isibted.1290741 İndeks Tarihi: 09-05-2023

GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS

Öz:
Metal-Insulator-Metal (MIM) nanostructures provide tunable multiple absorption/emission peaks desirable for spectroscopy, light sensing and thermophotovoltaic (TPV) applications. The efficiency of TPV systems can be improved by employing MIM emitters with resonators that allow high emission above PV cell bandgap and low emission elsewhere. Although there have been attempts to design MIM emitters for TPV systems, a comprehensive study that investigates and optimizes different resonator shapes is lacking. In this study, broadband TPV emitters with W-SiO2-W nanostructures are optimized for pairing with GaSb PV cells. A numerical approach is followed utilizing finite-difference time-domain method and particle swarm optimization scheme, MIM emitters with four resonator shapes: disk, square, pyramid, and cone are dimensionally optimized to attain an emissivity spectrum that overlaps with high quantum efficiency region of the GaSb cell. The optimized emitters are compared for efficiency, power output, material consumption, as well as their optical response to temperature and angular effects. At an emitter temperature of 1600 K, electrical power outputs of 2.335-2.418 W·cm-2 and spectral efficiencies of 56.2-57.6% are obtained. It is found that flat resonators tend to achieve similar performance to that of pointy resonators with shorter heights. Among the considered shapes, disk emitter demonstrates the highest efficiency with minimum material consumption. Compared to a plain W emitter at the same temperature, the disk MIM emitter exhibits significantly higher spectral efficiency and electrical power output (34% and 215% respectively). The results demonstrate the successful use of nano-elements in TPV systems, and the potential for fabricating and realizing such structures.
Anahtar Kelime: Metal-insulator-metal selective emitter surface plasmon polariton magnetic polariton nanostructure thermal radiation harvesting particle swarm optimization.

SICAKLIĞA BAĞLI YAYINIM GÖSTEREN NANOYAPILI W-SiO2-W SEÇİCİ YAYICININ TERMOFOTOVOLTAİK UYGULAMALAR İÇİN GEOMETRİK OPTİMİZASYONU

Öz:
Metal-yalıtkan-metal (MIM) nanoyapılar, ışık algılama, spektroskopi ve termofotovoltaik (TPV) uygulamalar için arzu edilen, ayarlanabilir soğurma/yayma spektrumu oluşturur. TPV sistemlerin verimliliği, PV hücrenin bant aralığı enerjisi üzerinde yüksek, altında düşük yayma sağlayan rezonatörlerin yayıcıda kullanımıyla iyileştirilebilir. Daha önce MIM yapıların TPV yayıcı olarak tasarlanma girişimleri olmasına rağmen, farklı rezonatör şekillerinin optimizasyon ve kapsamlı incelenmesi eksiktir. Bu çalışmada, GaSb PV hücre ile eşleştirilmek üzere, W-SiO2-W nanoyapılı geniş bant TPV yayıcılar optimize edilmiştir. Zamanda sonlu farklar yöntemi ve parçacık sürü optimizasyonu kullanılarak, disk, kare, piramit ve koni olmak üzere dört rezonatör şeklinin boyutları, emisivitelerinin GaSb hücrenin kuantum verimliliğiyle spektral olarak eşleşmesi için nümerik olarak optimize edilmiştir. Optimize edilen yayıcılar; verim, güç çıktısı, harcanan malzeme miktarı, yayma açısı ve sıcaklık değişimine karşı optik davranışları bakımından karşılaştırılmıştır. 1600 K yayıcı sıcaklığında, 2.335-2.418 W·cm-2 aralığında elektriksel güç çıktısı ve %56.2-57.6 aralığında spektral verim elde edilmiştir. Düz yapılı rezonatörlerin, sivri yapılı rezonatörlerle benzer performanslara, daha alçak boyutta nanoyapılarla ulaştığı gözlenmiştir. İncelenen şekiller arasında, disk rezonatör kullanan yayıcıların en yüksek verime en az malzeme kullanımı ile eriştiği gözlenmiştir. Disk rezonatörlü yayıcının, aynı sıcaklıkta düz W yayıcıya göre, oldukça yüksek spektral verim ve elektriksel güç çıktısı sağlayacağı gösterilmiştir (sırasıyla, %34 ve %215). Çalışmanın sonuçları, nano elamanların TPV sistemlerde başarılı kullanım ve üretim potansiyelini göstermektedir.
Anahtar Kelime: Metal-yalıtkan-metal seçici yayıcı yüzey plazmon polariton manyetik polariton nanoyapı ısıl radyasyon harmanlaması parçacık sürü optimizasyonu

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adachi, S., 2013, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information, Springer Science and Business Media.
  • Atak, E. E., 2021, Investigation of Nanostructured Surfaces for Thermophotovoltaic Applications, Master's Thesis, Middle East Technical University, Ankara, Turkey.
  • Atak, E. E., Elçioğlu, E. B. and Okutucu-Özyurt, T., 2020, Nanostructured silicon design for effectively capturing infrared radiation for near-field TPV applications. NanoRad 2020 4th International Workshop on Nano-Micro Thermal Radiation, Shanghai, China.
  • Atak, E. E., Okutucu-Özyurt, T. and Elçioğlu, E. B., 2021, Metal-Insulator-Metal Selective Emitter Design with an Emissivity Matching with Gasb Thermophotovoltaic Cell. Proceedings of CHT-21 ICHMT International Symposium on Advances in Computational Heat Transfer. Begel House Inc.
  • Aydın, K., Ferry, V. E., Briggs, R. M. and Atwater, H. A., 2011, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature communications, 2(1), pp. 1-7.
  • Bandiera, S., Jacob, D., Muller, T., Marquier, F. Laroche, M.; Greffet, J. J., 2008, Enhanced absorption by nanostructured silicon. Applied Physics Letters, 93(19).
  • Blandre, E., Vaillon, R. and Drévillon, J., 2019. New insights into the thermal behavior and management of thermophotovoltaic systems. Optics Express, 27(25).
  • Cai, Q., Chen, P., Cao, S., Ye, Q., Wu, X., 2020, Performance Analysis of GaSb Cell and Thermophotovoltaic System Under Near-Field Thermal Radiation. International Journal of Thermophysics, 41(12), pp. 1-15.
  • Celanovic, I., Jovanovic, N. and Kassakian, J., 2008, Two-dimensional tungsten photonic crystals as selective thermal emitters. Applied Physics Letters, 92(15).
  • Chubb, D., 2007, Fundamentals of thermophotovoltaic energy conversion, Elsevier, Amsterdam, The Netherlands.
  • Dang, P. T., 2020, Efficient broadband truncated- pyramid-based metamaterial absorber in the visible and near-infrared regions. Crystals, 10(9), p. 784.
  • Deinega, A., Valuev, I., Potapkin, B. and Lozovik, Y., 2011, Minimizing light reflection from dielectric textured surfaces. JOSA A, 28(5), pp. 770-777.
  • Ferrari, C., Melino, F., Pinelli, M., Spina, P. R., Venturini, M., 2014, Overview and status of thermophotovoltaic systems. Energy Procedia, Volume 45, pp. 160-169.
  • Fraas, L. M., Avery, J. E., Gruenbaum, P. E., Sundaram, V. S., Emery, K., Matson, R., 1991, Fundamental characterization studies of GaSb solar cells, In Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference-1991. pp. 80-84.
  • Fraas, L. M., Avery, J. E., Huang, H. X. and Martinelli, R. U., 2003, Thermophotovoltaic system configurations and spectral control. Semiconductor Science and Technology, 18(5), p. S165.
  • Fraas, L. M., Avery, J. E. and Nakamura, T., 2002, Electricity from concentrated solar IR in solar lighting applications, In Conference Record of the Twenty- Ninth IEEE Photovoltaic Specialists Conference, pp. 963-966.
  • Fraas, L., Samaras, J., Avery, J. and Minkin, L., 2000, Antireflection coated refractory metal matched emitters for use with GaSb thermophotovoltaic generators. pp. 1020-1023.
  • Gombert, A., 2003, An overview of TPV emitter technologies. AIP conference proceedings, 653(1), pp. 123-131.
  • Han, S., Shin, J., Jung, P., Lee, H., Lee, B. J., 2016, Broadband Solar Thermal Absorber Based on Optical Metamaterials for High Temperature Applications. Advanced Optical Materials, 4(8), pp. 1265-1273.
  • Han, X., He, K., He, Z. and Zhang, Z., 2017, Tungsten- based highly selective solar absorber using simple nanodisk array. Optics express, 25(24), pp. A1072- A1078.
  • Iles, P. A., Chu, C. and Linder, E., 1996, The influence of bandgap on TPV converter efficiency. AIP Conference Proceedings, February, 358(1), pp. 446- 457.
  • Incropera, F. P., Lavine, A. S., Bergman, T. L. and DeWitt, D. P., 2011, Fundamentals of heat and mass transfer, New York, Wiley.
  • Isobe, K. and Hanamura, K., 2019, Selective absorption of a thermophotovoltaic cell using a thin semiconductor and a top fishnet-structured electrode. International Journal of Heat and Mass Transfer, Issue 134, pp. 807-814.
  • Kennedy, J. and Eberhart, R., 1995, Particle swarm optimization, in Proceedings of ICNN'95-international conference on neural networks. Vol. 4, pp. 1942-1948, IEEE.
  • Khorrami, Y. and Fathi, D., 2019, Broadband thermophotovoltaic emitter using magnetic polaritons based on optimized one-and two-dimensional multilayer structures. JOSA B, 36(3), pp. 662-666.
  • Kim, J. H., Jung, S. M. and Shin, M. W., 2017, High- temperature degradation of one-dimensional metallodielectric (W/SiO2) photonic crystal as selective thermal emitter for thermophotovoltaic system. Optical Materials, Issue 72, pp. 45-51.
  • Lee, B. J., Wang, L. P. and Zhang, Z. M., 2008, Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 16(15), pp. 11328-11336.
  • Matsuno, Y. and Sakurai, A., 2017, Perfect infrared absorber and emitter based on a large-area metasurface. Optical Materials Express, 7(2), pp. 618-626.
  • Palik, E. D., 1998, Handbook of optical constants of solids. Academic press.
  • Qiu, K., Hayden, A. C. S., Mauk, M. G. and Sulima, O. V., 2006, Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources. Solar energy materials and solar cells, 90(1), pp. 68- 81.
  • Roberts, S., 1959. Optical properties of nickel and tungsten and their interpretation according to Drude's formula. Physical Review, 114(1), p. 104.
  • Robinson, J. and Rahmat-Samii, Y., 2004. Particle swarm optimization in electromagnetics. IEEE transactions on antennas and propagation, 52(2), pp. 397-407.
  • Rozenbaum, O., Meneses, D. D. S., Auger, Y., Chermanne, S., Echegut, P., 1999, A spectroscopic method to measure the spectral emissivity of semi- transparent materials up to high temperature. Review of scientific instruments, 70(10), pp. 4020-4025.
  • Sai, H. and Yugami, H., 2004, Thermophotovoltaic generation with selective radiators based on tungsten surface gratings. Applied Physics Letters, 85(16).
  • Sakurai, A. and Matsuno, Y., 2019, Design and fabrication of a wavelength-selective near-infrared metasurface emitter for a thermophotovoltaic system. Micromachines, 10(2), p. 157.
  • Sakurai, A., Zhao, B. and Zhang, Z. M., 2014, Resonant frequency and bandwidth of metamaterial emitters and absorbers predicted by an RLC circuit model. Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 149, pp. 33-40.
  • Sakurai, A., Zhao, B. and Zhang, Z. M., 2015, Effect of polarization on dual-band infrared metamaterial emitters or absorbers. Journal of Quantitative Spectroscopy and Radiative Transfer, Issue 158, pp. 111-118.
  • Shi, Y. and Eberhart, R., 1998, A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) pp. 69-73, IEEE.
  • Silva-Oelker, G., Jerez-Hanckes, C. and Fay, P., 2018, Study of W/HfO 2 grating selective thermal emitters for thermophotovoltaic applications. Optics express, 26(22).
  • Silva-Oelker, G., Jerez-Hanckes, C. and Fay, P., 2019, High-temperature tungsten-hafnia optimized selective thermal emitters for thermophotovoltaic applications. Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 231, pp. 61-68.
  • Song, J., Si, M., Cheng, Q. and Luo, Z., 2016, Two- dimensional trilayer grating with a metal/insulator/metal structure as a thermophotovoltaic emitter. Applied optics, 55(6), pp. 1284-1290.
  • Touloukian, Y. S. and DeWitt, D. P., 1970, Thermophysical Properties of Matter-The TPRC Data Series. Volume 7. Thermal Radiative Properties- Metallic Elements and Alloys. New York, Springer.
  • Wang, H. and Wang, L., 2013, Perfect selective metamaterial solar absorbers. Optics express, 21(106), pp. A1078-A1093.
  • Wang, L. P. and Zhang, Z. M., 2012, Wavelength- selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics. Applied Physics Letters, 100(6), p. 063902.
  • Woolf, D., Hensley, J., Cederberg, J. G., Bethke, D. T., Grine, A. D., Shaner, E. A., 2014, Heterogeneous metasurface for high temperature selective emission. Applied Physics Letters, 105(8), p. 081110.
  • Yee, K., 1966, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on antennas and propagation, 14(3), pp. 302-307.
  • Yokoyama, T., Dao, T. D., Chen, K., Ishii, S., Sugavaneshwar, R. P., Kitajima, M., Nagao, T., 2016, Spectrally Selective Mid Infrared Thermal Emission from Molybdenum Plasmonic Metamaterial Operated up to 1000° C. Advanced Optical Materials, 4(12), pp. 1987-1992.
  • Yüksel, A., Heltzel, A. and R.Howell, J., 2015, Design and Optimization of Thermal Selective Emitters for High-Efficiency Thermophotovoltaic (TPV) Power Generation. In Energy Sustainability, Vol. 56840, p. V001T10A003). American Society of Mechanical Engineers. San Diego.
  • Zhang, W. W., Qi, H., Yin, Y. M. and Ren, Y. T., 2021, Tailoring radiative properties of a complex trapezoidal grating solar absorber by coupling between SPP and multi-order MP for solar energy harvesting. Optics Communications, Volume 479.
  • Zhao, B., Wang, L., Shuai, Y. and Zhang, Z. M., 2013, Thermophotovoltaic emitters based on a two- dimensional grating/thin-film nanostructure. International Journal of Heat and Mass Transfer, Issue 67, pp. 637-645.
  • Zhao, Y. and Fu, C., 2016, Numerical simulation on the thermal radiative properties of a 2D SiO2/W/SiO2/W layered grating for thermophotovoltaic applications. Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 182, pp. 35-44.
  • Zheng, P., Sujan, K. and Nianqiang, W., 2019, Converting plasmonic light scattering to confined light absorption and creating plexcitons by coupling a gold nano-pyramid array onto a silica–gold film. Nanoscale horizons, 4(2), pp. 516-525.
APA ATAK E, Elçioğlu E, Okutucu-Ozyurt T (2023). GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. , 95 - 106. 10.47480/isibted.1290741
Chicago ATAK ESLEM ENİS,Elçioğlu Elif Begüm,Okutucu-Ozyurt Tuba GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. (2023): 95 - 106. 10.47480/isibted.1290741
MLA ATAK ESLEM ENİS,Elçioğlu Elif Begüm,Okutucu-Ozyurt Tuba GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. , 2023, ss.95 - 106. 10.47480/isibted.1290741
AMA ATAK E,Elçioğlu E,Okutucu-Ozyurt T GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. . 2023; 95 - 106. 10.47480/isibted.1290741
Vancouver ATAK E,Elçioğlu E,Okutucu-Ozyurt T GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. . 2023; 95 - 106. 10.47480/isibted.1290741
IEEE ATAK E,Elçioğlu E,Okutucu-Ozyurt T "GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS." , ss.95 - 106, 2023. 10.47480/isibted.1290741
ISNAD ATAK, ESLEM ENİS vd. "GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS". (2023), 95-106. https://doi.org/10.47480/isibted.1290741
APA ATAK E, Elçioğlu E, Okutucu-Ozyurt T (2023). GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. Isı Bilimi ve Tekniği Dergisi, 43(1), 95 - 106. 10.47480/isibted.1290741
Chicago ATAK ESLEM ENİS,Elçioğlu Elif Begüm,Okutucu-Ozyurt Tuba GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. Isı Bilimi ve Tekniği Dergisi 43, no.1 (2023): 95 - 106. 10.47480/isibted.1290741
MLA ATAK ESLEM ENİS,Elçioğlu Elif Begüm,Okutucu-Ozyurt Tuba GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. Isı Bilimi ve Tekniği Dergisi, vol.43, no.1, 2023, ss.95 - 106. 10.47480/isibted.1290741
AMA ATAK E,Elçioğlu E,Okutucu-Ozyurt T GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. Isı Bilimi ve Tekniği Dergisi. 2023; 43(1): 95 - 106. 10.47480/isibted.1290741
Vancouver ATAK E,Elçioğlu E,Okutucu-Ozyurt T GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS. Isı Bilimi ve Tekniği Dergisi. 2023; 43(1): 95 - 106. 10.47480/isibted.1290741
IEEE ATAK E,Elçioğlu E,Okutucu-Ozyurt T "GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS." Isı Bilimi ve Tekniği Dergisi, 43, ss.95 - 106, 2023. 10.47480/isibted.1290741
ISNAD ATAK, ESLEM ENİS vd. "GEOMETRIC OPTIMIZATION OF A NANOSTRUCTURED W-SiO2-W SELECTIVE EMITTER WITH TEMPERATURE DEPENDENT EMISSIVITY FOR THERMOPHOTOVOLTAIC APPLICATIONS". Isı Bilimi ve Tekniği Dergisi 43/1 (2023), 95-106. https://doi.org/10.47480/isibted.1290741