Yıl: 2022 Cilt: 35 Sayı: 2 Sayfa Aralığı: 55 - 63 Metin Dili: Türkçe DOI: 10.36519/kd.2022.4002 İndeks Tarihi: 09-05-2023

Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları

Öz:
Çok ilaca dirençli (ÇİD) ve yaygın ilaç dirençli (YİD) Pseudomonas aeruginosa yüksek riskli klonlarının dünyada yayılımı küresel bir tehdittir. P. aeruginosa, kromozomal mutasyonların seçilmesi sonucu mevcut olan tüm antipsödomonal ilaçlara belirgin şekilde antimikrobiyal direnç geliştirme kapasitesine sahiptir. Tüm genom dizileme ile yapılan mutasyonel rezistom analizi, geniş çapta yayılım gösteren yüksek riskli klonların karakterizasyonuna ve antibiyotik direnç mekanizmalarının evrimsel dinamiklerinin anlaşılmasına imkân sağlamıştır. P. aeruginosa rezistom analizi, P. aeruginosa infeksiyonlarında tedavi stratejilerinin geliştirilmesine ve kullanılan antibiyotik tedavisinin etkinliğinin takibine olanak sağlayacaktır. Bu derlemede, P. aeruginosa rezistomunu biçimlendiren başlıca gen ve mutasyonlar ve P. aeruginosa’nın epidemik yüksek riskli klonları gözden geçirilmiştir.
Anahtar Kelime:

Pseudomonas aeruginosa Resistome and Epidemic High-Risk Clones

Öz:
The worldwide spread of multidrug-resistant /extensively drug-resistant Pseudomonas aeruginosa high-risk clones is a global health threat. P. aeruginosa has an evident capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations. Analysis of whole genome sequencing mutational resistomes has proven to be useful for understanding the evolutionary dynamics of antibiotic resistance mechanisms and characterization of widespread epidemic high-risk clones. The analysis of the P. aeruginosa resistome should permit to design therapeutic strategies and to monitor the efficacy of administered antibiotic treatments. In this review, the main genes and mutations which shape the P. aeruginosa resistome and the epidemic high-risk clones of P. aeruginosa are reviewed.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Philip D. Lister, Daniel J. Wolter, Nancy D. Hanson. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009; 22(4):582-610.
  • 2. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43-8. [CrossRef]
  • 3. Oliver A, Mulet X, Lopez-Causap. C, Juan C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 2015;21-22:41-59. [CrossRef]
  • 4. Antimicrobial resistance surveillance in Europe 2015 [İnternet]. Stockholm: European Centre for Disease Prevention and Control. [30 Ocak 2017; erişim 01 Eylül 2021]. https://www.ecdc.europa.eu/en/pubications-data/antimicrobial- resistance-surveillance-europe-2015
  • 5. Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318-27. [CrossRef]
  • 6. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock RE, Martínez JL. The intrinsic resistome of Pseudomonas aeruginosa to β-lactams. Virulence. 2011;2(2):144- 6. [CrossRef]
  • 7. Berrazeg M, Jeannot K, Ntsogo Enguéné VY, et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother. 2015;59(10):6248-55. [CrossRef]
  • 8. Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151-71. [CrossRef]
  • 9. Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128(6):1037-50. [CrossRef]
  • 10. Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules. 2017;22(3):468. [CrossRef]
  • 11. Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015;28(2): 337-418. [CrossRef]
  • 12. Dupont P, Hocquet D, Jeannot K, Chavanet P, Plésiat P. Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. J Antimicrob Chemother. 2005;55(4):518-22. [CrossRef]
  • 13. Okamoto K, Gotoh N, Nishino T. Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2002;46(8):2696-9. [CrossRef]
  • 14. Llanes C, Köhler T, Patry I, Dehecq B, Van Delden C, Plésiat P. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother. 2011;55(12):5676-84. [CrossRef]
  • 15. Chevalier S, Bouffartigues E, Bodilis J, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017;41(5):698-722. [CrossRef]
  • 16. Moya B, Dötsch A, Juan C, et al. Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog. 2009;5(3):e1000353. [CrossRef]
  • 17. Juan C, Maci MD, Gutirrez O, Vidal C, Perez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2005;49(11):4733-8. [CrossRef]
  • 18. Cabot G, Ocampo-Sosa AA, Tubau F, et al. Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study. Antimicrob Agents Chemother. 2011;55(5):1906-11. [CrossRef]
  • 19. Fraile-Ribot PA, Cabot G, Mulet X, et al. Mechanisms leading to in vivo ceftolozane/ tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(3):658-63. [CrossRef]
  • 20. Pseudomonas aeruginosa Derived Cephalosporinase (PDC) Database [Internet]. Palma: Antibiotic Resistance and Pathogenicity of Bacterial Infections Group. [güncelleme 10 Aralık 2021; erişim 01 Eylül 2021]. https://arpbigidisba.com
  • 21. Cabot G, Florit-Mendoza L, Sanchez-Diener I, Zamorano L, Oliver A. Deciphering beta-lactamase-independent beta-lactam resistance evolution trajectories in Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(12):3322-31. [CrossRef]
  • 22. Riera E, Cabot G, Mulet X, et al. Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem. J Antimicrob Chemother. 2011;66(9):2022-7. [CrossRef]
  • 23. Moy B, Beceiro A, Cabot G, et al. Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56(9):4771-8. [CrossRef]
  • 24. Guenard S, Muller C, Monlezun L, et al. Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(1):221-8. [CrossRef]
  • 25. Köhler T, Epp SF, Curty LK, Pechère JC. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 1999;181(20):6300–5. [CrossRef]
  • 26. Mulet X, Moy B, Juan C, et al. Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth. Antimicrob Agents Chemother. 2011;55(10):4560-8. [CrossRef]
  • 27. Bruchmann S, Dötsch A, Nouri B, Chaberny IF, Häussler S. Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance. Antimicrob Agents Chemother. 2013;57(3):1361-8. [CrossRef]
  • 28. Del Barrio-Tofiño E, López-Causapé C, Cabot G, et al. Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain. Antimicrob Agents Chemother. 2017;61(11):e01589- 17. [CrossRef]
  • 29. López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol. 2018;9:685. [CrossRef]
  • 30. Dößelmann, B, Willmann M, Steglich M. Rapid and consistent evolution of colistin resistance in extensively drugresistant Pseudomonas aeruginosa during morbidostat culture. Antimicrob Agents Chemother. 2017;61(9):e00043-17. [CrossRef]
  • 31. Patel G, Bonomo RA. Status report on carbapenemases: challenges and prospects. Expert Rev Anti Infect Ther. 2011;9(5):555-70. [CrossRef]
  • 32. Diene SMM, Rolain JM. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clin Microbiol Infect. 2014;20(9):831-8. [CrossRef]
  • 33. Chávez-Jacobo VM, Hernández-Ramírez KC, Romo-Rodríguez P, et al. CrpP Is a novel ciprofloxacin-modifying enzyme encoded by the Pseudomonas aeruginosa pUM505 plasmid. Antimicrob Agents Chemother. 2018;62(6):e02629-17. [CrossRef]
  • 34. Pál C, Papp B, Lázár V. Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol. 2015;23(7):401-7. [CrossRef]
  • 35. Imamovic L, Ellabaan MMH, Dantas Machado AM, et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell. 2018;172(1-2):121-134.e14. [CrossRef]
  • 36. Cabot G, Bruchmann S, Mulet X. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58(6):3091-9. [CrossRef]
  • 37. Yen P, Papin JA. History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment. PLoS Biol. 2017;15(8):e2001586. [CrossRef]
  • 38. Del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020;56(6):106196.
  • 39. Cabot G, Ocampo-Sosa AA, Domínguez MA. Genetic markers of widespread extensively drug-resistant Pseudomonas aeruginosa high-risk clones. Antimicrob Agents Chemother. 2021;56(12):6349-57. [CrossRef]
  • 40. Thrane SW, Taylor VL, Freschi L, et al. The widespread multidrug-resistant serotype O12 Pseudomonas aeruginosa clone emerged through concomitant horizontal transfer of serotype antigen and antibiotic resistance gene clusters. mBio. 2015;6(5):e01315–96. [CrossRef]
  • 41. Treepong P, Kos VN, Guyeux C, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin Microbiol Infect. 2018;24(3):258-66. [CrossRef] 42. Kocsis B, Gulyás D, Szabó D. Diversity and distribution of resistance markers in Pseudomonas aeruginosa international high-risk clones. Microorganisms. 2021;9(2):359. [CrossRef]
  • 43. Turton JF, Wright L, Underwood A, et al. High-resolution analysis by whole-genome sequencing of an international lineage (Sequence Type 111) of Pseudomonas aeruginosa associated with metallo-carbapenemases in the United Kingdom. J Clin Microbiol. 2015;53(8):2622-31. [CrossRef]
  • 44. Cabot G, López-Causapé C, Ocampo-Sosa AA, et al. Deciphering the resistome of the widespread Pseudomonas aeruginosa sequence type 175 international high-risk clone through wholegenome sequencing. Antimicrob Agents Chemother. 2016;60(12):7415-23. [CrossRef]
  • 45. Fraile-Ribot PA, Del Rosario-Quintana C, López-Causapé C, et al. Emergence of resistance to novel β-lactam–β-lactamase inhibitor combinations due to horizontally acquired AmpC (FOX-4) in Pseudomonas aeruginosa sequence type 308. Antimicrob Agents Chemother. 2019;64(1):e02112-19. [CrossRef]
  • 46. Mulet X, Cabot G, Ocampo-Sosa AA, et al. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother. 2013;57(11): 5527-35. [CrossRef]
  • 47. Pedersen SS, Koch C, Høiby N, Rosendal K. An epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. J Antimicrob Chemother. 1986;17(4):505-16. [CrossRef]
  • 48. López-Causapé C, Rojo-Molinero E, Mulet X, et al. Clonal dissemination, emergence of mutator lineages and antibiotic resistance evolution in Pseudomonas aeruginosa cystic fibrosis chronic lung infection. PLoS ONE. 2013;8(8):e71001. [CrossRef]
  • 49. Ashish A, Shaw M, McShane J, Ledson MJ, Walshaw MJ. Health-related quality of life in cystic fibrosis patients infected with transmissible Pseudomonas aeruginosa strains: cohort study. JRSM Short Rep. 2012;3(2):12. [CrossRef]
  • 50. Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol. 2007;7:45. [CrossRef]
  • 51. Armstrong D, Bell S, Robinson M, et al. Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. J Clin Microbiol. 2003;41(5):2266-7. [CrossRef]
  • 52. Anthony M, Rose B, Pegler MB, et al. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol. 2002;40(8):2772-8. [CrossRef]
  • 53. Bradbury R, Champion A, Reid DW. Poor clinical outcomes associated with a multi-drug resistant clonal strain of Pseudomonas aeruginosa in the Tasmanian cystic fibrosis population. Respirology. 2008;13(6):886-92. [CrossRef]
  • 54. Del Barrio-Tofiño E, Sánchez-Diener I, Zamorano L, et al. Association between Pseudomonas aeruginosa O-antigen serotypes, resistance profiles and high-risk clones: results from a Spanish nationwide survey. J Antimicrob Chemother. 2019;74(11):3217-20. [CrossRef]
  • 55. Cabrolier, N., Sauget, M., Bertrand, X., Hocquet, D. Matrix-assisted laser desorption ionization-time of flight mass spectrometry identifies Pseudomonas aeruginosa high-risk clones. J Clin Microbiol. 2015;53(4):1395-8. [CrossRef]
  • 56. Agnello M, Finkel SE, Wong-Beringer A. Fitness cost of fluoroquinolone resistance in clinical isolates of Pseudomonas aeruginosa differs by Type III secretion genotype. Front Microbiol. 2016;7:1591. [CrossRef]
APA gürpınar Ö, Köseoglu Eser Ö (2022). Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. , 55 - 63. 10.36519/kd.2022.4002
Chicago gürpınar Öznur,Köseoglu Eser Özgen Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. (2022): 55 - 63. 10.36519/kd.2022.4002
MLA gürpınar Öznur,Köseoglu Eser Özgen Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. , 2022, ss.55 - 63. 10.36519/kd.2022.4002
AMA gürpınar Ö,Köseoglu Eser Ö Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. . 2022; 55 - 63. 10.36519/kd.2022.4002
Vancouver gürpınar Ö,Köseoglu Eser Ö Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. . 2022; 55 - 63. 10.36519/kd.2022.4002
IEEE gürpınar Ö,Köseoglu Eser Ö "Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları." , ss.55 - 63, 2022. 10.36519/kd.2022.4002
ISNAD gürpınar, Öznur - Köseoglu Eser, Özgen. "Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları". (2022), 55-63. https://doi.org/10.36519/kd.2022.4002
APA gürpınar Ö, Köseoglu Eser Ö (2022). Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. Klimik Dergisi, 35(2), 55 - 63. 10.36519/kd.2022.4002
Chicago gürpınar Öznur,Köseoglu Eser Özgen Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. Klimik Dergisi 35, no.2 (2022): 55 - 63. 10.36519/kd.2022.4002
MLA gürpınar Öznur,Köseoglu Eser Özgen Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. Klimik Dergisi, vol.35, no.2, 2022, ss.55 - 63. 10.36519/kd.2022.4002
AMA gürpınar Ö,Köseoglu Eser Ö Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. Klimik Dergisi. 2022; 35(2): 55 - 63. 10.36519/kd.2022.4002
Vancouver gürpınar Ö,Köseoglu Eser Ö Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları. Klimik Dergisi. 2022; 35(2): 55 - 63. 10.36519/kd.2022.4002
IEEE gürpınar Ö,Köseoglu Eser Ö "Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları." Klimik Dergisi, 35, ss.55 - 63, 2022. 10.36519/kd.2022.4002
ISNAD gürpınar, Öznur - Köseoglu Eser, Özgen. "Pseudomonas aeruginosa Rezistomu ve Epidemik Yüksek Riskli Klonları". Klimik Dergisi 35/2 (2022), 55-63. https://doi.org/10.36519/kd.2022.4002