Yıl: 2021 Cilt: 31 Sayı: 1 Sayfa Aralığı: 40 - 47 Metin Dili: İngilizce DOI: 10.5152/pcp.2021.20169 İndeks Tarihi: 09-05-2023

Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder

Öz:
Objective: It is known that there are alterations in functional brain networks in pediatric obsessive- compulsive disorder (OCD) and new studies are needed to identify and conceptualize these alterations. This study aimed to investigate resting-state functional connectivity (Rs-FC) changes in adolescents with OCD. Materials and Methods: We compared FC alterations in 15 drug-naive adolescents with OCD and 15 healthy controls (HC). Rs-FC networks were obtained with independent component analysis and logistic regression was used to identify the components that displayed significant group differentiation. Results: Data were decomposed into 30 independent components, and 4 components corresponding to functional networks showed a significant difference between the 2 groups (sensitivity and specificity value was 86.7%): Posterior cingulate cortex (PCC), cerebellum, right frontoparietal network (R-FPN), and anterior DMN (aDMN). The expression scores of the PCC, cerebellum, and R-FPN were significantly lower in OCD, while the expression score of the aDMN was significantly higher in OCD as compared with HC. In addition, OCD patients demonstrated a significant anti-correlation between the R-FPN and lateral sensorimotor network, and a positive correlation between the PCC and parahippocampal gyri. Conclusion: These findings indicate that alterations in FC networks incumbent on high mental processes are involved in the pathophysiology of OCD in adolescents.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th ed.; 2013.
  • 2. Micali N, Heyman I, Perez M, et al. Long-term outcomes of obsessive–compulsive disorder: follow-up of 142 children and adolescents. Br J Psychiatry. 2010;197(2):128-134. [CrossRef]
  • 3. Rubia K, Smith AB, Woolley J, et al. Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum Brain Mapp. 2006;27(12):973-993. [CrossRef]
  • 4. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13(1):5-14. [CrossRef]
  • 5. Calhoun VD, Miller R, Pearlson G, Adalı T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014;84(2):262-274. [CrossRef]
  • 6. Marusak HA, Calhoun VD, Brown S, et al. Dynamic functional connectivity of neurocognitive networks in children. Hum Brain Mapp. 2017;38(1):97-108. [CrossRef]
  • 7. Gürsel DA, Avram M, Sorg C, Brandl F, Koch K. Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev. 2018;87:151-160. [CrossRef]
  • 8. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483-506. [CrossRef]
  • 9. Gruner P, Vo A, Argyelan M, et al. Independent component analysis of resting state activity in pediatric obsessive- compulsive disorder. Hum Brain Mapp. 2014;35(10):5306- 5315. [CrossRef]
  • 10. Weber AM, Soreni N, Noseworthy MD. A preliminary study of functional connectivity of medication naive children with obsessive–compulsive disorder. Progr Neuro- Psychopharmacol Biol Psychiatry. 2014;53:129-136.
  • 11. Cheng Y, Xu J, Nie B, et al. Abnormal resting-state activities and functional connectivities of the anterior and the posterior cortexes in medication-naive patients with obsessive-compulsive disorder. PLoS ONE. 2013;8(6):e67478. [CrossRef]
  • 12. Moreira PS, Marques P, Magalhães R, et al. The resting- brain of obsessive–compulsive disorder. Psychiatry Res Neuroimaging. 2019;290:38-41. [CrossRef]
  • 13. Abramovitch A, Abramowitz JS, Mittelman A, et al. Research Review: neuropsychological test performance in pediatric obsessive-compulsive disorder-a meta- analysis. J Child Psychol Psychiatry Allied Discip. 2015;56(8):837-847. [CrossRef]
  • 14. Kaufman J, Birmaher B, Brent D, et al. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36(7):980-988. [CrossRef]
  • 15. Goodman WK, Price LH, Rasmussen SA, et al. The Yale- Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):1006- 1011. [CrossRef]
  • 16. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97- 113. (https://doi.org/10.1016/0028-3932(71)90067-4).
  • 17. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59(3):2142-2154. [CrossRef]
  • 18. Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage. 2009;45(1)(suppl):S163-S172. [CrossRef]
  • 19. Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp. 2007;28(11):1251-1266. [CrossRef]
  • 20. Raichle ME. The brain’s dark energy. Sci Am. Scientific American. 2010;302(3):44-49. [CrossRef]
  • 21. Göttlich M, Krämer UM, Kordon A, Hohagen F, Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive- compulsive disorder. Hum Brain Mapp. 2014;35(11):5617- 5632. [CrossRef]
  • 22. Anticevic A, Hu S, Zhang S, et al. Global resting-state fMRI analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry. 2014;75(8):595-605.
  • 23. Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, Schacter DL. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage. 2010;53(1):303-317. [CrossRef]
  • 24. Xu X, Yuan H, Lei X. Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci Rep. 2016;6:21001. [CrossRef]
  • 25. Coutinho JF, Fernandesl SV, Soares JM, et al. Default mode network dissociation in depressive and anxiety states. Brain Imaging Behav. 2016;10(1):147-157. [CrossRef]
  • 26. Leech R, Kamourieh S, Beckmann CF, Sharp DJ. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci. 2011;31(9):3217-3224. [CrossRef]
  • 27. Fitzgerald KD, Stern ER, Angstadt M, et al. Altered function and connectivity of the medial frontal cortex in pediatric obsessive-compulsive disorder. Biol Psychiatry. 2010;68(11):1039-1047. [CrossRef]
  • 28. Koch K, Reeß TJ, Rus OG, et al. Increased default mode network connectivity in obsessive–compulsive disorder during reward processing. Front Psychiatry. 2018;9:254. [CrossRef]
  • 29. Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF. Resting-state functional connectivity between fronto- parietal and default mode networks in obsessive- compulsive disorder. PLoS ONE. 2012;7(5):e36356. [CrossRef]
  • 30. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12- 32. [CrossRef]
  • 31. Fan J, Zhong M, Gan J, et al. Altered connectivity within and between the default mode, central executive, and salience networks in obsessive-compulsive disorder. J Affect Disord. 2017;223:106-114. [CrossRef]
  • 32. Ward AM, Schultz AP, Huijbers W, et al. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum Brain Mapp. 2014;35(3):1061-1073. [CrossRef]
  • 33. Gottwald J, de Wit S, Apergis-Schoute AM, et al. Impaired cognitive plasticity and goal-directed control in adolescent obsessive–compulsive disorder. Psychol Med. 2018;48(11):1900-1908. [CrossRef]
  • 34. Gonçalves ÓF, Soares JM, Carvalho S, et al. Patterns of default mode network deactivation in obsessive compulsive disorder. Sci Rep. 2017;7:44468. [CrossRef]
  • 35. Gürsel DA, Reinholz L, Bremer B, et al. Frontoparietal and salience network alterations in obsessive–compulsive disorder: insights from independent component and sliding time window analyses. J Psychiatry Neurosci. 2020;45(3):214-221. [CrossRef]
  • 36. Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dial Clin Neurosci. 2018;20(2):133- 140. [CrossRef]
  • 37. Eng GK, Sim K, Chen SHA. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review. Neurosci Biobehav Rev. 2015;52:233-257. [CrossRef]
  • 38. de Vries FE, de Wit SJ, van den Heuvel OA, et al. Cognitive control networks in OCD: a resting-state connectivity study in unmedicated patients with obsessive-compulsive disorder and their unaffected relatives. World J Biol Psychiatry. 2019;20(3):230-242. [CrossRef]
  • 39. Jang JH, Kim JH, Jung WH, et al. Functional connectivity in fronto-subcortical circuitry during the resting state in obsessive-compulsive disorder. Neurosci Lett. 2010;474(3):158-162. [CrossRef]
  • 40. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297-311. [CrossRef]
  • 41. Xu T, Zhao Q, Wang P, et al. Altered resting-state cerebellar-cerebral functional connectivity in obsessive- compulsive disorder. Psychol Med. 2019;49(7):1156- 1165. [CrossRef]
  • 42. Hu X, Du M, Chen L, et al. Meta-analytic investigations of common and distinct grey matter alterations in youths and adults with obsessive-compulsive disorder. Neurosci Biobehav Rev. 2017;78:91-103. [CrossRef]
  • 43. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum. 2007;6(3):254-267. [CrossRef]
APA Kinay Ermis D, Ulasoglu-Yildiz C, Kurt E, ERYÜREK K, Demiralp T, Coskun M (2021). Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. , 40 - 47. 10.5152/pcp.2021.20169
Chicago Kinay Ermis Duygu,Ulasoglu-Yildiz Cigdem,Kurt Elif,ERYÜREK Kardelen,Demiralp Tamer,Coskun Murat Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. (2021): 40 - 47. 10.5152/pcp.2021.20169
MLA Kinay Ermis Duygu,Ulasoglu-Yildiz Cigdem,Kurt Elif,ERYÜREK Kardelen,Demiralp Tamer,Coskun Murat Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. , 2021, ss.40 - 47. 10.5152/pcp.2021.20169
AMA Kinay Ermis D,Ulasoglu-Yildiz C,Kurt E,ERYÜREK K,Demiralp T,Coskun M Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. . 2021; 40 - 47. 10.5152/pcp.2021.20169
Vancouver Kinay Ermis D,Ulasoglu-Yildiz C,Kurt E,ERYÜREK K,Demiralp T,Coskun M Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. . 2021; 40 - 47. 10.5152/pcp.2021.20169
IEEE Kinay Ermis D,Ulasoglu-Yildiz C,Kurt E,ERYÜREK K,Demiralp T,Coskun M "Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder." , ss.40 - 47, 2021. 10.5152/pcp.2021.20169
ISNAD Kinay Ermis, Duygu vd. "Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder". (2021), 40-47. https://doi.org/10.5152/pcp.2021.20169
APA Kinay Ermis D, Ulasoglu-Yildiz C, Kurt E, ERYÜREK K, Demiralp T, Coskun M (2021). Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. Psychiatry and clinical psychopharmacology (Online), 31(1), 40 - 47. 10.5152/pcp.2021.20169
Chicago Kinay Ermis Duygu,Ulasoglu-Yildiz Cigdem,Kurt Elif,ERYÜREK Kardelen,Demiralp Tamer,Coskun Murat Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. Psychiatry and clinical psychopharmacology (Online) 31, no.1 (2021): 40 - 47. 10.5152/pcp.2021.20169
MLA Kinay Ermis Duygu,Ulasoglu-Yildiz Cigdem,Kurt Elif,ERYÜREK Kardelen,Demiralp Tamer,Coskun Murat Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. Psychiatry and clinical psychopharmacology (Online), vol.31, no.1, 2021, ss.40 - 47. 10.5152/pcp.2021.20169
AMA Kinay Ermis D,Ulasoglu-Yildiz C,Kurt E,ERYÜREK K,Demiralp T,Coskun M Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. Psychiatry and clinical psychopharmacology (Online). 2021; 31(1): 40 - 47. 10.5152/pcp.2021.20169
Vancouver Kinay Ermis D,Ulasoglu-Yildiz C,Kurt E,ERYÜREK K,Demiralp T,Coskun M Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder. Psychiatry and clinical psychopharmacology (Online). 2021; 31(1): 40 - 47. 10.5152/pcp.2021.20169
IEEE Kinay Ermis D,Ulasoglu-Yildiz C,Kurt E,ERYÜREK K,Demiralp T,Coskun M "Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder." Psychiatry and clinical psychopharmacology (Online), 31, ss.40 - 47, 2021. 10.5152/pcp.2021.20169
ISNAD Kinay Ermis, Duygu vd. "Resting-State Functional Connectivity Alterations in Drug- Naive Adolescents with Obsessive-Compulsive Disorder". Psychiatry and clinical psychopharmacology (Online) 31/1 (2021), 40-47. https://doi.org/10.5152/pcp.2021.20169