Yıl: 2022 Cilt: 47 Sayı: 3 Sayfa Aralığı: 119 - 129 Metin Dili: İngilizce DOI: 10.1515/tjb-2021-0277 İndeks Tarihi: 10-05-2023

Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics

Öz:
Objectives: Neuroinflammation is an important factor in the pathogenesis of neurodegenerative disesases. The following study aimed to clarify the effects of β-lactam antibiotics to the cholinergic system, on acetylcholines- terase (AChE), butyrylcholinesterase (BuChE) activities, considering the structural differences of antibiotics, to evaluate the underlying mechanism of effects provided by protein-antibiotic interactions, and to clarify possible ef- fects of the antibiotics on the aggregation of Aβ-peptides. Methods: The inhibition/activation mechanisms for each antibiotic were examined kinetically by Ellman method. Destabilization effects of them on amyloid peptide fibrillation were examined and protein-ligand interactions were evaluated with most potent antibiotics by molecular docking studies. Results: Themostpowerfulinhibitionsweredetectedbythe inhibition studies of AChE with ceftazidime (CAZ) and BuChE with amoxicillin (AMX). CAZ was exhibited dose-related dual effect on AChE activity. CAZ was actually the dose-related modifier of AChE. At higher concentrations, CAZ was a nonessential activator of AChE. Molecular docking studies have been confirmed by kinetic studies. Interested β-lactam antibiotics did not prevent fibrillation rate as rifampicin. Conclusions: Inhibition/activation behaviours of studied β-lactam antibiotics on both cholinesterases may suggest that cholinergic transmission is one of the crucially important components of the β-lactam antibiotics-induced central nervous system adverse reactions.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Zeinab BZ, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 2020;25:5789–817.
  • Iqbal UH, Zeng E, Pasinetti GM. The use of antimicrobial and antiviral drugs in Alzheimer’s disease. Int J Mol Sci 2020;21: 4920–39.
  • Wolcott RD. Microbial biofilm may contribute to Alzheimer’s disease. Clin Microbiol Newsl 2020;42:181–6.
  • McManus MR, Heneka TM. Role of neuroinflammation in neurodegeneration: new insights. Alzheimer’s Res Ther 2017;9: 14–21.
  • Chen Y, Lin H, Yang H, Tan R, Bian Y, Fu T, et al. Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Adv 2017;7: 3429–38.
  • Reid GA, Chilukuri N, Darvesh S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013;234:53–68.
  • Patočka J, Kuča K, Jun D. Acetylcholinesterase and butyrylcholinesterase – important enzymes of human body. Acta med. (Hradec král.) 2004;47:215–22.
  • Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer’s disease. J Neuroinflammation 2019; 16:108–18.
  • Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med 2016;6:8–31.
  • Bush K. The importance of β-lactamases to the development of new β-lactams. In: Mayers DL, editor. Antimicrobial drug resistance. Infectious disease. London: Humana Press; 2009: 135–44 pp.
  • DeRoseM,VerdinoA,SorienteA,MarobottiA.Theoddcouple(s): a overview of beta-lactam antibiotics bearing more than one pharmacophoric group. Int J Mol Sci 2021;22:617–39.
  • SmithPW,ZuccottoF,BatesRH,Martinez-MartinezMS,ReadKD, Peet C, et al. Pharmacokinetics of β-lactam antibiotics: clues from the past to help discover long-acting oral drugs in the future. ACS Infect Dis 2018;4:1439–47.
  • Fernandes R, Amador P, Prudencio C. β-lactams chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol 2013;24:7–17.
  • AmakhinDV,SmolenskyIV,SobolevaEB,ZaitsevAV.Paradoxical anticonvulsant effect of cefepime in the pentylene tetrazole model of seizures in rats. Pharmaceuticals 2020;13:80–96.
  • Lacroix C, Kheloufi F, Montastruc F, Bennis Y, Pizzoglio V, Micallef J. Serious central nervous system side effects of cephalosporins: a national analysis of serious reports registered in the French Pharmacovigilance. J Neurol Sci 2019; 398:196–201.
  • Ong CY, Qin Y. Myoclonus from antibiotic therapy (Ceftazidime- induced neurotoxicity): a case report and review. Cureu 2018;10: 2–5.
  • Payne EL, Gagnon DJ, Riker RR, Seder DB, Glisic EK, Morris JG, et al. Cefepime-induced neurotoxicity: a systematic review. Crit Care 2017;21:276–84.
  • ThabetF,MaghrabiMA,BarraqAA,TabarkiB.Cefepime-induced non-convulsive status epilepticus: case report and review. Neurocrit Care 2009;10:347–51.
  • Yimer ME, Hishe HZ, Tuem KB. Repurposing of the β-lactam antibiotics, ceftriaxone for neurological disorders: a review. Front Neurosci 2019;13:236–57.
  • Lee KE, Kim SK, Cho KO, Kim SY. Pre-ischemic treatment with ampicillin reduces neuronal damage in the mouse Hippocampus and neostriatum after transient forebrain ischemia. Korean J Physiol Pharmacol 2008;12:287–91.
  • Chu K, Lee ST, Sinn DI, Ko SY, Kim EH, Kim JM, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke 2007;38: 177–82.
  • Fahim AM, Farag AM, Mermer A, Bayrakı H, Sirin Y. Synthesis of novel β-lactams: antioxidant activity, acetylcholinesterase inhibition and computational studies. J Mol Struct 2021;1233: 1300092–0108.
  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
  • Groenning M, Olsen L, van de Weert M, Flink JM, Frokjaer S, Jørgensen FS. Study on the binding of Thioflavin T to beta- sheet-rich and non-beta-sheet cavities. J Struct Biol 2006;158: 358–69.
  • Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 2012;55: 10282–6.
  • Kosak U, Brus B, Knez D, Zakelj S, Trontelj J, Pislar A, et al. The magic of crystal structure-based inhibitor optimization: development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. J Med Chem 2018;61:119–39.
  • Nuthakki VJ, Mudududdla R, Sharma A, Kumar A, Bharate SB. Synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine and its bromo-derivative as dual cholinesterase inhibitors. Bioorg Chem 2019;90:103062–75.
  • SegelIH.Enzymekinetics.Toronto:JohnWiley&Sons,Inc.;1975: 227–31 pp. Chapter V.
  • Masson P, Froment MT, Gillon E, Nachon F, Lockridge O, Schopfer LM. Kinetic analysis of effector modulation of butyrylcholinesterase-catalysed hydrolysis of acetanilides and homologous esters. FEBS J 2008;275:2617–31.
  • Sboury AA. Enzyme inhibition and activation: a general theory. J Iran Chem Soc 2009;6:219–29.
  • SegelIH.Enzymekinetics.Toronto:JohnWiley&Sons,Inc.;1975: 188–90 pp. Chapter IV.
  • De Boer D, Nguyet N, Mao J, Moore J, Sorin EJ. A comprehensive review of cholinesterase modeling and simulation. Biomolecules 2021;11:580–615.
  • Craig WA, Andes DR. Cephalosporins. In: Bennet JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 8th ed. Philadelphia, PA: Elsevier/Saunders; 2015:278–92 pp.
  • Lutsar I, McCracken GH, Friedland IR. Antibiotic pharmacodynamics in cerebrospinal fluid. Clin Infect Dis 1998; 27:1117–29.
  • ChowKM,HuiAC,SzetoCC.Neurotoxicityinducedbybeta-lactam antibiotics: from bench to bedside. Eur J Clin Microbiol Infect Dis 2005;24:649–53.
  • Vardakas KZ, Kalimeris GD, Triarides NA, Falagas ME. An update on adverse drug reactions related to β-lactam antibiotics. Expert Opin Drug Saf 2018;17:499–508.
  • Wallace KL. Antibiotic-induced convulsions. Crit Care Clin 1997; 13:741–62. Fong IW, Tomkins KB. Penetration of ceftazidime into the cerebrospinalfluidofpatientswithandwithoutevidenceof meningeal inflammation. Antimicrob Agents Chemother 1984;26: 115–6. Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement 2018;14: 1602–14.
APA özturan özer e, Mirza H, Unsal Tan O, Türkoğlu S (2022). Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. , 119 - 129. 10.1515/tjb-2021-0277
Chicago özturan özer eda,Mirza Hasan Cenk,Unsal Tan Oya,Türkoğlu Suna Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. (2022): 119 - 129. 10.1515/tjb-2021-0277
MLA özturan özer eda,Mirza Hasan Cenk,Unsal Tan Oya,Türkoğlu Suna Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. , 2022, ss.119 - 129. 10.1515/tjb-2021-0277
AMA özturan özer e,Mirza H,Unsal Tan O,Türkoğlu S Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. . 2022; 119 - 129. 10.1515/tjb-2021-0277
Vancouver özturan özer e,Mirza H,Unsal Tan O,Türkoğlu S Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. . 2022; 119 - 129. 10.1515/tjb-2021-0277
IEEE özturan özer e,Mirza H,Unsal Tan O,Türkoğlu S "Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics." , ss.119 - 129, 2022. 10.1515/tjb-2021-0277
ISNAD özturan özer, eda vd. "Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics". (2022), 119-129. https://doi.org/10.1515/tjb-2021-0277
APA özturan özer e, Mirza H, Unsal Tan O, Türkoğlu S (2022). Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. Türk Biyokimya Dergisi, 47(3), 119 - 129. 10.1515/tjb-2021-0277
Chicago özturan özer eda,Mirza Hasan Cenk,Unsal Tan Oya,Türkoğlu Suna Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. Türk Biyokimya Dergisi 47, no.3 (2022): 119 - 129. 10.1515/tjb-2021-0277
MLA özturan özer eda,Mirza Hasan Cenk,Unsal Tan Oya,Türkoğlu Suna Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. Türk Biyokimya Dergisi, vol.47, no.3, 2022, ss.119 - 129. 10.1515/tjb-2021-0277
AMA özturan özer e,Mirza H,Unsal Tan O,Türkoğlu S Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. Türk Biyokimya Dergisi. 2022; 47(3): 119 - 129. 10.1515/tjb-2021-0277
Vancouver özturan özer e,Mirza H,Unsal Tan O,Türkoğlu S Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics. Türk Biyokimya Dergisi. 2022; 47(3): 119 - 129. 10.1515/tjb-2021-0277
IEEE özturan özer e,Mirza H,Unsal Tan O,Türkoğlu S "Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics." Türk Biyokimya Dergisi, 47, ss.119 - 129, 2022. 10.1515/tjb-2021-0277
ISNAD özturan özer, eda vd. "Investigation of anti-cholinesterase and anti-amyloidogenic activities of β-lactam antibiotics". Türk Biyokimya Dergisi 47/3 (2022), 119-129. https://doi.org/10.1515/tjb-2021-0277