Yıl: 2023 Cilt: 51 Sayı: 1 Sayfa Aralığı: 10 - 21 Metin Dili: İngilizce DOI: 10.5543/tkda.2022.98544 İndeks Tarihi: 11-05-2023

Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE

Öz:
Objective: High triglyceride (TG) levels are associated with an increased risk for atherosclerotic cardiovascular disease (ASCVD) and pancreatitis. The objectives for this study were to evaluate for the coexistence of severe HTG and pancreatitis in two different geographic regions of Turkey and to identify rare variants that cause monogenic HTG in our country. Methods: In our study from 2014 to 2019, patients with severe HTG who presented to the endocrinology outpatient clinics with TG levels >500 mg/dL (5.7 mmol/L) were evaluated. The LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE genes were sequenced using next generation sequencing to screen for potentially pathogenic variants. Results: Potentially pathogenic variants were identified in 64 (47.1%) of 136 patients. Variants in LPL were seen in 42 (30.9%) cases, APOA5 variants in 10 (7.4%) cases, APOC2 variants in 5 (3.7%) cases, LMF1 variants in 5 (3.7%) cases, and APOE mutations in 2 (1.5%) cases. In the subgroup that experienced pancreatitis (n = 76, 56.3%), LPL variants were seen at higher frequency (P <0.001) than in the subgroup with no history of pancreatitis (n = 60, 43.7%). Patients who developed pancreatitis (56.3%) demonstrated a median TG of 2083 mg/dL (23.5 mmol/L), and patients without pancreatitis (43.7%) demonstrated a median TG of 1244.5 mg/dL (14.1 mmol/L) (P <0.001). Conclusion: Accurate approach to HTG diagnosis is important for the prevention of pancreatitis and ASCVD. Evaluation of variants in primary HTG after excluding secondary causes may help provide a patient-centric precision treatment plan.
Anahtar Kelime:

Ciddi Hipertrigliseridemi ile İlişkili Genetik Varyantlar: LPL, APOC2, APOA5, GPIHBP1, LMF1 ve APOE

Öz:
Amaç: Yüksek trigliserid (TG) düzeyleri; aterosklerotik kardiyovasküler hastalık (ASKVH) ve pankreatit riskinde artma ile ilişkilidir. Amacımız, Türkiye'nin iki farklı coğrafi bölgesinde ciddi hipertrigliseridemi (HTG) ve pankreatit birlikteliğini değerlendirmek ve ülkemizdeki monogenik HTG’ye yol açan varyantları tanımlamaktır. Yöntemler: Çalışmamızda 2014-2019 yıllarında endokrinoloji polikniklerine başvuran, TG dü- zeyi ≥500 mg/dL (5,7 mmol/L) olan HTG vakaları incelenmiştir. LPL, APOC2, APOA5, GPIHBP1, LMF1 ve APOE genleri, potansiyel olarak patojenik varyantları taramak için yeni nesil dizileme kullanılarak sekanslanmıştır. Bulgular: Yüz otuz altı hastanın 64'ünde (%47,1) potansiyel olarak patojenik varyantlar tespit edildi. 42 (%30,9) vakada LPL, 10 (%7,4) vakada APOA5, 5 (%3,7) vakada APOC2, 5 (%3,7) vakada LMF1 ve 2 (%1,5) vakada APOE varyantları saptandı. Pankreatit geçiren grupta (n = 76, %56,3) LPL varyantları, pankreatit öyküsü olmayan (n = 60, %43,7) gruba göre daha yük- sek sıklıkta (P <0,001) görüldü. Pankreatit geçiren hastaların medyan TG'si 2083 mg/dL (23,5 mmol/L) ve pankreatit geçirmeyen hastaların medyan TG'si 1244,5 mg/dL (14,1 mmol/L) idi (P <0,001). Sonuç: Pankreatit ve ASKVH’ın önlenmesi için HTG tanısına doğru bir yaklaşım önemlidir. Sekonder nedenleri dışladıktan sonra primer HTG için varyantların değerlendirilmesi, hasta merkezli hassas bir tedavi planının yapılmasına yardımcı olabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Dron JS, Hegele RA. Genetics of hypertriglyceridemia. Front Endocrinol (Lausanne). 2020;11:455.
  • 2. Hegele RA, Ginsberg HN, Chapman MJ, et al; European Atherosclerosis Society Consensus Panel. The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014;2(8):655–666.
  • 3. Xiao C, Dash S, Morgantini C, et al. Pharmacological targeting of the atherogenic dyslipidemia complex: the next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes. 2016;65(7):1767–1778.
  • 4. Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118(4):547–563.
  • 5. Laufs U, Parhofer KG, Ginsberg HN, et al. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99–109c.
  • 6. Wolska A, Yang ZH, Remaley AT. Hypertriglyceridemia: new approaches in management and treatment. Curr Opin Lipidol. 2020;31(6):331–339.
  • 7. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36(3):232–240.
  • 8. Baass A, Paquette M, Bernard S, et al. Familial chylomicronemia syndrome: an under-recognized cause of severe hypertriglyceridaemia. J Intern Med. 2020;287(4):340–348.
  • 9. Toth PP, Shah PK, Lepor NE. Targeting hypertriglyceridemia to mitigate cardiovascular risk: A review. Am J Prev Cardiol. 2020;3:100086.
  • 10. Sandhu S, Al-Sarraf A, Taraboanta C, et al. Incidence of pancreatitis, secondary causes, and treatment of patients referred to a specialty lipid clinic with severe hypertriglyceridemia: a retrospective cohort study. Lipids Health Dis. 2011;10:157.
  • 11. Bayram F, Kocer D, Gundogan K, et al. Prevalence of dyslipidemia and associated risk factors in Turkish adults. J Clin Lipidol. 2014;8(2):206–216.
  • 12. Onat A. Lipids, lipoproteins and apolipoproteins among turks, and impact on coronary heart disease. Anadolu Kardiyol Derg. 2004;4(3):236–245.
  • 13. Kayıkçıoğlu M, Tokgözoğlu L, Kılıçkap M, et al. Data on prevalence of dyslipidemia and lipid values in Turkey: Systematic review and meta-analysis of epidemiological studies on cardiovascular risk factors. Turk Kardiyol Dern Ars. 2018;46(7):556–574.
  • 14. Hegele RA, Tsimikas S. Lipid-Lowering Agents. Circ Res. 2019;124(3):386–404.
  • 15. Surendran RP, Visser ME, Heemelaar S, et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J Intern Med. 2012;272(2):185–196.
  • 16. Gill PK, Dron JS, Dilliott AA, et al. Ancestry-specific profiles of genetic determinants of severe hypertriglyceridemia. J Clin Lipidol. 2021;15(1):88–96.
  • 17. Nichols GA, Philip S, Reynolds K, et al. Increased cardiovascular Abedi et al. Variants in Hypertriglyceridemia risk in hypertriglyceridemic patients with statin-controlled LDL cholesterol. J Clin Endocrinol Metab. 2018;103(8):3019–3027.
  • 18. Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride- lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA. 2019;321(4):364–373.
  • 19. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626–635.
  • 20. Lindkvist B, Appelros S, Regnér S, et al. A prospective cohort study on risk of acute pancreatitis related to serum triglycerides, cholesterol and fasting glucose. Pancreatology. 2012;12(4):317–324.
  • 21. Rashid N, Sharma PP, Scott RD, et al. Severe hypertriglyceridemia and factors associated with acute pancreatitis in an integrated health care system. J Clin Lipidol. 2016;10(4):880–890.
  • 22. Gonzales KM, Donato LJ, Shah P, et al. Measurement of apolipoprotein B levels helps in the identification of patients at risk for hypertriglyceridemic pancreatitis. J Clin Lipidol. 2021;15(1):97–103.
  • 23. Berglund L, Brunzell JD, Goldberg AC, et al; Endocrine society. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(9):2969–2989.
  • 24. Cullen P, Schulte H, Assmann G. The Münster Heart Study (PROCAM): total mortality in middle-aged men is increased at low total and LDL cholesterol concentrations in smokers but not in nonsmokers. Circulation. 1997;96(7):2128–2136.
  • 25. Ferrières J, Verdier C, Combis MS, et al. Big data and severe hypertriglyceridemia: Prevalence in 297,909 individuals. Arch Cardiovasc Dis Suppl. 2019;11(1):118–119.
  • 26. Dron JS, Wang J, Cao H, et al. Severe hypertriglyceridemia is primarily polygenic. J Clin Lipidol. 2019;13(1):80–88.
  • 27. Kaplan S, Pinar G, Kaplan B, et al. The prevalence of consanguineous marriages and affecting factors in turkey: a national survey. J Biosoc Sci. 2016;48(5):616–630.
  • 28. Brahm AJ, Hegele RA. Chylomicronaemia–current diagnosis and future therapies. Nat Rev Endocrinol. 2015;11(6):352–362.
  • 29. Gonzales JC, Gordts PL, Foley EM, et al. Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans. J Clin Invest. 2013;123(6):2742–2751.
  • 30. Hobbs HH, Leitersdorf E, Goldstein JL, et al. Multiple crm-mutations in familial hypercholesterolemia. Evidence for 13 alleles, including four deletions. J Clin Invest. 1988;81(3):909–917.
  • 31. Garuti R, Jones C, Li WP, et al. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J Biol Chem. 2005;280(49):40996–41004.
  • 32. Doolittle MH, Neher SB, Ben-Zeev O, et al. Lipase maturation factor LMF1, membrane topology and interaction with lipase proteins in the endoplasmic reticulum. J Biol Chem. 2009;284(48):33623-33633.
  • 33. Lamiquiz-Moneo I, Blanco-Torrecilla C, et al. Frequency of rare mutations and common genetic variations in severe hypertriglyceridemia in the general population of Spain. Lipids Health Dis. 2016;15:82.
  • 34. Brahm A, Hegele RA. Hypertriglyceridemia. Nutrients. 2013;5(3):981–1001.
  • 35. Johansen CT, Hegele RA. Genetic bases of hypertriglyceridemic phenotypes. Curr Opin Lipidol. 2011;22(4):247–253.
  • 36. Gin P, Goulbourne CN, Adeyo O, et al. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Hum Mol Genet. 2012;21(13):2961–2972.
  • 37. Gotoda T, Shirai K, Ohta T, et al; Research committee for primary hyperlipidemia, research on measures against intractable diseases by the Ministry of Health, Labour and Welfare in Japan. Diagnosis and management of type I and type V hyperlipoproteinemia.J Atheroscler Thromb. 2012;19(1):1–12.
  • 38. Calandra S, Priore Oliva C, Tarugi P, et al. APOA5 and triglyceride metabolism, lesson from human APOA5 deficiency. Curr Opin Lipidol. 2006;17(2):122–127.
  • 39. Nilsson SK, Heeren J, Olivecrona G, et al. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis. 2011;219(1):15–21.
  • 40. Beigneux AP, Franssen R, Bensadoun A, et al. Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 2009;29(6):956–962.
APA YILDIRIM SIMSIR I, bayram f, Onay H, Özgür S, McIntyre A, Toth P, Hegele R, Abedi A (2023). Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. , 10 - 21. 10.5543/tkda.2022.98544
Chicago YILDIRIM SIMSIR ILGIN,bayram fahri,Onay Huseyin,Özgür Su,McIntyre Adam,Toth Peter,Hegele Robert,Abedi Amir Hossein Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. (2023): 10 - 21. 10.5543/tkda.2022.98544
MLA YILDIRIM SIMSIR ILGIN,bayram fahri,Onay Huseyin,Özgür Su,McIntyre Adam,Toth Peter,Hegele Robert,Abedi Amir Hossein Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. , 2023, ss.10 - 21. 10.5543/tkda.2022.98544
AMA YILDIRIM SIMSIR I,bayram f,Onay H,Özgür S,McIntyre A,Toth P,Hegele R,Abedi A Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. . 2023; 10 - 21. 10.5543/tkda.2022.98544
Vancouver YILDIRIM SIMSIR I,bayram f,Onay H,Özgür S,McIntyre A,Toth P,Hegele R,Abedi A Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. . 2023; 10 - 21. 10.5543/tkda.2022.98544
IEEE YILDIRIM SIMSIR I,bayram f,Onay H,Özgür S,McIntyre A,Toth P,Hegele R,Abedi A "Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE." , ss.10 - 21, 2023. 10.5543/tkda.2022.98544
ISNAD YILDIRIM SIMSIR, ILGIN vd. "Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE". (2023), 10-21. https://doi.org/10.5543/tkda.2022.98544
APA YILDIRIM SIMSIR I, bayram f, Onay H, Özgür S, McIntyre A, Toth P, Hegele R, Abedi A (2023). Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Türk Kardiyoloji Derneği Arşivi, 51(1), 10 - 21. 10.5543/tkda.2022.98544
Chicago YILDIRIM SIMSIR ILGIN,bayram fahri,Onay Huseyin,Özgür Su,McIntyre Adam,Toth Peter,Hegele Robert,Abedi Amir Hossein Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Türk Kardiyoloji Derneği Arşivi 51, no.1 (2023): 10 - 21. 10.5543/tkda.2022.98544
MLA YILDIRIM SIMSIR ILGIN,bayram fahri,Onay Huseyin,Özgür Su,McIntyre Adam,Toth Peter,Hegele Robert,Abedi Amir Hossein Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Türk Kardiyoloji Derneği Arşivi, vol.51, no.1, 2023, ss.10 - 21. 10.5543/tkda.2022.98544
AMA YILDIRIM SIMSIR I,bayram f,Onay H,Özgür S,McIntyre A,Toth P,Hegele R,Abedi A Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Türk Kardiyoloji Derneği Arşivi. 2023; 51(1): 10 - 21. 10.5543/tkda.2022.98544
Vancouver YILDIRIM SIMSIR I,bayram f,Onay H,Özgür S,McIntyre A,Toth P,Hegele R,Abedi A Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Türk Kardiyoloji Derneği Arşivi. 2023; 51(1): 10 - 21. 10.5543/tkda.2022.98544
IEEE YILDIRIM SIMSIR I,bayram f,Onay H,Özgür S,McIntyre A,Toth P,Hegele R,Abedi A "Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE." Türk Kardiyoloji Derneği Arşivi, 51, ss.10 - 21, 2023. 10.5543/tkda.2022.98544
ISNAD YILDIRIM SIMSIR, ILGIN vd. "Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE". Türk Kardiyoloji Derneği Arşivi 51/1 (2023), 10-21. https://doi.org/10.5543/tkda.2022.98544