Yıl: 2022 Cilt: 52 Sayı: 4 Sayfa Aralığı: 252 - 261 Metin Dili: Türkçe DOI: 10.4274/tjo.galenos.2021.72654 İndeks Tarihi: 12-05-2023

Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları

Öz:
Amaç: Glokom hastaları ve sağlıklı bireylerde optik koherens tomografi anjiyografi ile optik disk ve maküla damar dansite değerlerini karşılaştırmak, yapısal ve fonksiyonel test sonuçlarıyla damar dansiteleri arasındaki ilişkiyi değerlendirmek amaçlanmıştır. Gereç ve Yöntem: Çalışmaya benzer görme alanı kayıpları bulunan 55 primer açık açılı glokom (PAAG), 31 psödoeksfolyatif glokom (PEG) ve 42 sağlıklı olmak üzere 128 göz dahil edildi. Tüm görüntü peripapiller damar dansitesi (TG-ppDD), intradisk damar dansitesi (idDD), peripapiller damar dansitesi (ppDD), tüm görüntü maküla damar dansitesi (TG-mDD), parafoveal damar dansitesi (pfDD) değerleri glokom grupları ve kontrol grubu arasında karşılaştırıldı. Görme alanı bulguları, retina sinir lifi tabakası kalınlığı (RSLTK) ve optik sinir başı ölçümleriyle peripapiller ve maküla damar dansitesi arasındaki korelasyonlar incelendi. Bulgular: PEG ve PAAG gruplarında TG-ppDD, idDD, TG-mDD ve pfDD değerleri kontrol grubuna göre anlamlı daha düşük bulundu (p<0,001). PEG grubunda TG-ppDD değeri PAAG grubundan anlamlı daha düşük bulundu (p<0,001). PEG ve PAAG grupları arasında TG-mDD ve pfDD açısından pfDD nazal kadran dışında anlamlı farklılık yoktu. PEG ve PAAG gruplarında RSLTK ile ppDD değerleri arasında pozitif yönlü kuvvetli korelasyonlar tespit edildi (p<0,001). PEG ve PAAG gruplarında görme alanı ortalama deviasyon ve patern standart sapma değerleri ile peripapiller ve maküla damar dansite değerleri arasında anlamlı korelasyonlar saptandı. Sonuç: Glokom hastalarında damar dansite değerlerinin normal bireylere göre daha düşük olduğu, yapısal ve fonksiyonel testlerle damar dansite değerleri arasında kuvvetli korelasyon bulunduğu anlaşılmıştır. PEG grubunda damar dansitesinin PAAG grubuna göre daha düşük olması, PEG hastalarında vasküler hasarın daha fazla olduğunu gösterebilir.
Anahtar Kelime:

Optical Coherence Tomography Angiography Findings in Primary Open- Angle and Pseudoexfoliation Glaucoma

Öz:
Objectives: To compare the optical disc and macular vascular density values of patients with glaucoma and healthy individuals by using optical coherence tomography angiography and evaluate the relationship between structural and functional test results and vascular density. Materials and Methods: The study included 128 eyes in total: 31 with pseudoexfoliation glaucoma (PEG), 55 with primary open-angle glaucoma (POAG) and similar visual field defects, and 42 healthy eyes. Whole image peripapillary vessel density (wpVD), intradisc vessel density (idVD), peripapillary vessel density (pVD), whole image macular vessel density (wmVD), and parafoveal vessel density (pfVD) values were compared between the groups. Correlations between visual field findings, retinal nerve fiber layer (RNFL) and optic nerve head measurements and peripapillary and macular vascular density were analyzed. Results: In the PEG and POAG groups, wpVD, idVD, wmVD, and pfVD values were significantly lower in than the control group. In the PEG group, wpVD was found to be significantly lower than the POAG group (p<0.001). There was no significant difference between the PEG and POAG groups in wmVD and pfVD except for nasal pfVD. There were strong positive correlations between RNFL thickness and pVD in the glaucoma groups (p<0.001). Significant correlations were found between visual field mean deviation and pattern standard deviation values and peripapillary and macular vessel density values in the glaucoma groups. Conclusion: Vascular density values were lower in glaucoma patients compared to normal individuals, and there is a strong correlation between structural and functional tests and vessel density values. The lower vascular density in the PEG group compared to the POAG group indicates that vascular damage may be more common in PEG patients.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Križaj D. What is glaucoma? In: Kolb H, Fernandez E and Nelson R, eds. What is glaucoma? Webvision: The organization of the retina and visual system; Salt Lake City (UT): University of Utah Health Sciences Center Copyright: © 2021 Webvision; 1995.
  • 2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262-267.
  • 3. Şahli E, Tekelı O. Evaluation of risk factors in patients with primary open angle glaucoma (high tension glaucoma) and ocular hypertension. J Glaucoma. 2012;7:45-50.
  • 4. Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 2007;52(Suppl 2):162- 173.
  • 5. Prince AM, Streeten BW, Ritch R, Dark AJ, Sperling M. Preclinical diagnosis of pseudoexfoliation syndrome. Arch Ophthalmol. 1987;105:1076-1082.
  • 6. Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45:265-315.
  • 7. Ritch R. Exfoliation syndrome-the most common identifiable cause of open- angle glaucoma. J Glaucoma. 1994;3:176-177.
  • 8. Gürlü PV, Alimgil ML. The Risk of Glaucoma Development in Eyes with Pseudoexfoliation Syndrome. Turk J Ophthalmol. 2004;34:371-375.
  • 9. O’Brart DP, de Souza Lima M, Bartsch DU, Freeman W, Weinreb RN. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 1997;123:657-666.
  • 10. Rechtman E, Harris A, Kumar R, Cantor LB, Ventrapragada S, Desai M, Friedman S, Kagemann L, Garzozi HJ. An update on retinal circulation assessment technologies. Curr Eye Res. 2003;27:329-343.
  • 11. Nicolela MT, Hnik P, Drance SM. Scanning laser Doppler flowmeter study of retinal and optic disk blood flow in glaucomatous patients. Am J Ophthalmol. 1996;122:775-783.
  • 12. Plange N, Kaup M, Weber A, Remky A, Arend O. Fluorescein filling defects and quantitative morphologic analysis of the optic nerve head in glaucoma. Arch Ophthalmol. 2004;122:195-201.
  • 13. Ha SO, Kim DY, Sohn CH, Lim KS. Anaphylaxis caused by intravenous fluorescein: Clinical characteristics and review of literature. Intern Emerg Med. 2014;9:325-330.
  • 14. Mwanza JC, Budenz DL. New developments in optical coherence tomography imaging for glaucoma. Curr Opin Ophthalmol. 2018;29:121-129.
  • 15. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1:5.
  • 16. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121:1322-1332.
  • 17. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, Flaxel CJ, Lauer AK, Wilson DJ, Hornegger J, Fujimoto JG, Huang D. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112:2395-2402.
  • 18. Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45-50.
  • 19. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20:4710- 4725.
  • 20. Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, Davis E, Morrison JC, Huang D. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045-1052.
  • 21. Shahlaee A, Samara WA, Hsu J, Say EA, Khan MA, Sridhar J, Hong BK, Shields CL, Ho AC. In vivo assessment of macular vascular density in healthy human eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;165:39-46.
  • 22. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, Palakurthy M, Puttaiah NK, Rao DA, Webers CA. Regional comparisons of optical coherence tomography angiography vessel density in primary open- angle glaucoma. Am J Ophthalmol. 2016;171:75-83.
  • 23. Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, Edmunds B, Parikh M, Tehrani S, Morrison JC, Huang D. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124:1589-1599.
  • 24. Lu P, Xiao H, Liang C, Xu Y, Ye D, Huang J. Quantitative analysis of microvasculature in macular and peripapillary regions in early primary open- angle glaucoma. Curr Eye Res. 2020;45:629-635.
  • 25. Suwan Y, Geyman LS, Fard MA, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Peripapillary perfused capillary density in exfoliation syndrome and exfoliation glaucoma versus poag and healthy controls: An OCTA study. Asia Pac J Ophthalmol (Phila). 2018;7:84-89.
  • 26. Philip S, Najafi A, Tantraworasin A, Chui TYP, Rosen RB, Ritch R. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60:1244-1253.
  • 27. Dagdelen K, Dirican E. The assessment of structural changes on optic nerve head and macula in primary open angle glaucoma and ocular hypertension. Int J Ophthalmol. 2018;11:1631-1637.
  • 28. Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol. 1995;113:586-596.
  • 29. Sihota R, Sony P, Gupta V, Dada T, Singh R. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci. 2006;47:2006-2010.
  • 30. Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: Patterns of retinal nerve fiber layer progression. Ophthalmology. 2012;119:1858-1866.
  • 31. Yu PK, Balaratnasingam C, Xu J, Morgan WH, Mammo Z, Han S, Mackenzie P, Merkur A, Kirker A, Albiani D, Sarunic MV, Yu DY. Label-free density measurements of radial peripapillary capillaries in the human retina. PLoS One. 2015;10:e0135151.
  • 32. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol. 2018;11:835-843.
  • 33. Gandhi M, Dubey S. Evaluation of the optic nerve head in glaucoma. J Curr Glaucoma Pract. 2013;7:106-114.
  • 34. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012:3:3127-3137.
  • 35. Rao HL, Pradhan ZS, Weinreb RN, Reddy HB, Riyazuddin M, Dasari S, Palakurthy M, Puttaiah NK, Rao DA, Webers CA. Regional comparisons of optical coherence tomography angiography vessel density in primary open- angle glaucoma. Am J Ophthalmol. 2016;171:75-83.
  • 36. Park JH, Yoo C. Peripapillary vessel density in glaucomatous eyes: Comparison between pseudoexfoliation glaucoma and primary open-angle glaucoma. J Glaucoma. 2019;28:e36.
  • 37. Mansoori T, Sivaswamy J, Gamalapati JS, Agraharam SG, Balakrishna N. Measurement of radial peripapillary capillary density in the normal human retina using optical coherence tomography angiography. J Glaucoma. 2017;26:241-246.
  • 38. Mase T, Ishibazawa A, Nagaoka T, Yokota H, Yoshida A. Radial peripapillary capillary network visualized using wide-field montage optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016:57:504-510.
  • 39. Triolo G, Rabiolo A, Shemonski ND, Fard A, Di Matteo F, Sacconi R, Bettin P, Magazzeni S, Querques G, Vazquez LE, Barboni P, Bandello F. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci. 2017;58:5713-5722.
  • 40. Chung JK, Hwang YH, Wi JM, Kim M, Jung JJ. Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res. 2017;42:1458-1467.
  • 41. Poli M, Cornut PL, Nguyen AM, De Bats F, Denis P. Accuracy of peripapillary versus macular vessel density in diagnosis of early to advanced primary open angle glaucoma. J Fr Ophtalmol. 2018;41:619-629.
APA Duzova E, DEMİROK G, Üney G, KADERLİ A, yakin m, Ozbek-Uzman S, Ekşioğlu Ü (2022). Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. , 252 - 261. 10.4274/tjo.galenos.2021.72654
Chicago Duzova Emrah,DEMİROK GÜLİZAR,Üney Güner,KADERLİ Ahmet,yakin mehmet,Ozbek-Uzman Selma,Ekşioğlu Ümit Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. (2022): 252 - 261. 10.4274/tjo.galenos.2021.72654
MLA Duzova Emrah,DEMİROK GÜLİZAR,Üney Güner,KADERLİ Ahmet,yakin mehmet,Ozbek-Uzman Selma,Ekşioğlu Ümit Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. , 2022, ss.252 - 261. 10.4274/tjo.galenos.2021.72654
AMA Duzova E,DEMİROK G,Üney G,KADERLİ A,yakin m,Ozbek-Uzman S,Ekşioğlu Ü Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. . 2022; 252 - 261. 10.4274/tjo.galenos.2021.72654
Vancouver Duzova E,DEMİROK G,Üney G,KADERLİ A,yakin m,Ozbek-Uzman S,Ekşioğlu Ü Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. . 2022; 252 - 261. 10.4274/tjo.galenos.2021.72654
IEEE Duzova E,DEMİROK G,Üney G,KADERLİ A,yakin m,Ozbek-Uzman S,Ekşioğlu Ü "Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları." , ss.252 - 261, 2022. 10.4274/tjo.galenos.2021.72654
ISNAD Duzova, Emrah vd. "Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları". (2022), 252-261. https://doi.org/10.4274/tjo.galenos.2021.72654
APA Duzova E, DEMİROK G, Üney G, KADERLİ A, yakin m, Ozbek-Uzman S, Ekşioğlu Ü (2022). Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. Türk Oftalmoloji Dergisi, 52(4), 252 - 261. 10.4274/tjo.galenos.2021.72654
Chicago Duzova Emrah,DEMİROK GÜLİZAR,Üney Güner,KADERLİ Ahmet,yakin mehmet,Ozbek-Uzman Selma,Ekşioğlu Ümit Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. Türk Oftalmoloji Dergisi 52, no.4 (2022): 252 - 261. 10.4274/tjo.galenos.2021.72654
MLA Duzova Emrah,DEMİROK GÜLİZAR,Üney Güner,KADERLİ Ahmet,yakin mehmet,Ozbek-Uzman Selma,Ekşioğlu Ümit Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. Türk Oftalmoloji Dergisi, vol.52, no.4, 2022, ss.252 - 261. 10.4274/tjo.galenos.2021.72654
AMA Duzova E,DEMİROK G,Üney G,KADERLİ A,yakin m,Ozbek-Uzman S,Ekşioğlu Ü Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. Türk Oftalmoloji Dergisi. 2022; 52(4): 252 - 261. 10.4274/tjo.galenos.2021.72654
Vancouver Duzova E,DEMİROK G,Üney G,KADERLİ A,yakin m,Ozbek-Uzman S,Ekşioğlu Ü Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları. Türk Oftalmoloji Dergisi. 2022; 52(4): 252 - 261. 10.4274/tjo.galenos.2021.72654
IEEE Duzova E,DEMİROK G,Üney G,KADERLİ A,yakin m,Ozbek-Uzman S,Ekşioğlu Ü "Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları." Türk Oftalmoloji Dergisi, 52, ss.252 - 261, 2022. 10.4274/tjo.galenos.2021.72654
ISNAD Duzova, Emrah vd. "Primer Açık Açılı ve Psödoeksfoliyasyon Glokomunda Optik Koherens Tomografi Anjiyografi Bulguları". Türk Oftalmoloji Dergisi 52/4 (2022), 252-261. https://doi.org/10.4274/tjo.galenos.2021.72654