Yıl: 2023 Cilt: 30 Sayı: 2 Sayfa Aralığı: 217 - 222 Metin Dili: Türkçe DOI: 10.5505/vtd.2023.30633 İndeks Tarihi: 12-05-2023

Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler

Öz:
Adli biyolojik delillerden elde edilen DNA analizi olayla ilişkili failin belirlenmesinde güçlü kan ıtlar sağlamaktadır. K ısa ardışık tekrar bölgelerindeki (STR) tekrar sayısının ki şiler arası farklılık göstermesi ve bu bölgedelerdeki mutasyon oranının az olmas ı donörün kimliklendirilmesinde STR’leri genetik markır olarak tercih edilir hale getirmiştir. Fakat adli biyolojik materyaldeki DNA miktarının çok düşük olması ya da DNA’nın analize izin vermeyecek derecede bozulması, adli genetik yöntemlerde sıklıkla kullanılan k ısa ardışık tekrar bölgelerinin belirlenememesine neden olabilir. Şüpheli bir durumda, STR profili ile bir eşleşme olmadığında, numunenin donörünün belirlenmesine yardımcı olabilecek herhangi bir bilgi çok değerli olacaktır. Bu nedenle adli genetikte, analizi güç olan biyolojik örneklerin ait oldu ğu kimliğin teşhis edilmesinde, adli DNA fenotipleme ile donörün ya şı, saç ve göz rengi gibi fiziksel görünümü hakk ında ek bilgilerin çıkarılmasında, ayr ıca vücut sıvısı ve doku tipi tayini için mRNA ve miRNA analizlerini içeren, genetik ve epigenetik alanda yeni güncel moleküler metodlar gelişmeye ba şlamıştır. Bu derlemede, STR’lerin ve diğer markırların analizine büyük ölçüde masif paralel dizilemenin (massivelly parallel sequencing, MPS) uygulanmas ı, birden fazla ki şiye ait genetik materyal içeren karışım DNA profillerinin yorumlanmasındaki gelişmeler, vücut sıvılarının tanımlanması için RNA profillerinin belirlenmesi ve metilasyon profillerinin incelenmesi gibi epigenetik yöntemlerin de dahil edilmesiyle ilgili fenotipin belirlenmesinde, analiz potansiyelinin en üst seviyeye çıkarılması için bu alandaki son geli şmeler gözden geçirilmiştir.
Anahtar Kelime:

Current Molecular Genetic Developments in Forensic DNA Analysis

Öz:
DNA analysis obtained from forensic biological evidence provides strong evidence in identifying the perpetrator associated with the incident. The interindividual difference in the number of repeats in short tandem repeat (STR) regions and the low mutation rate in these regions have made STRs preferred as genetic markers for donor identification. However, if the amount of DNA in the fore nsic biological material is too low or the DNA is corrupted to such an extent that it does not allow analysis, the short tand em repeat regions, which are frequently used in forensic genetic methods, cannot be determined. In the case of doubt, when there is no match to the STR profile, any information that can assist in identifying the sample's donor would be invaluable. Therefore, in the forensic genetics, in the diagnos is of the identity of biological samples that are difficult to analyze, determining the additional information about the physical appearence of the donor such as age, hair and eyes colours with forensic DNA phenotyping, also such as body fluid and tissue type determination with mRNA and miRNA analyses, new current molecular methods have started to develop in the genetic and epigenetic field. In this review, for analysis of STRs and other markers we review recent advances in this field to maximize the analysis potential in identifying the phenotype of interest, largely through the application of massive pa rallel sequencing (MPS), developments in the interpretation of mixture DNA profiles containing genetic material of more than one person, RNA profiling for body fluid identification, and inclusion of epigenetic methods such as examination of methylation profiles.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Haddrill PR. Developments in forensic DNA analysis. Emerg Top Life Sci 2021; 5: 381-393.
  • 2. Parson W, Ballard D, Budowle B, Butler JM, Gettings KB, Gill P et. al. Massively parallel sequencing of forensic STRs: considerations of the DNA commission of the international society for forensic genetics (ISFG) on minimal nomenclature requirements. Forensic Sci Int Genet 2016; 22: 54-63.
  • 3. Borsting C, Morling N. Next generation sequencing and its applications in forensic genetics. Forensic Science International: Genetics 2015; 18 : 78-89.
  • 4. De Knijff P. From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet 2019; 38: 175-180.
  • 5. Bruijns B, Tiggelaar R, Gardeniers H. Massively parallel sequencing techniques for forensics: a review. Electrophoresis 2018; 39: 2642-2654.
  • 6. Jager AC, Alvarez ML, Davis CP, Guzman E, Han Y, Way L et. al. Developmental validation of the miSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci Int Genet 2017; 28: 52-70.
  • 7. Novroski NMM, Wendt FR, Woerner AE, Bus MM, Coble M, Budowle B. Expanding beyond the current core STR loci: an exploration of 73 STR markers with increased diversity for enhanced DNA mixture deconvolution. Forensic Sci Int Genet 2019; 38; 121-129.
  • 8. Bright JA, Taylor D, Gittelson S, Buckleton J. The paradigm shift in DNA profile interpretation. Forensic Sci Int Genet 2017; 31; 24-32.
  • 9. Coble MD, Bright JA. Probabilistic genotyping software: an overview. Forensic Sci Int Genet 2019; 38: 219-224.
  • 10. An JH, Shin KJ, Yang WI, Lee HY. Body fluid identification in forensics. BMB Rep 2012; 45: 545-553.
  • 11. Lewis C.A, Layne TR, Seashols-Williams SJ. Detection of microRNAs in DNA extractions for forensic biological source identification. J Forensic Sci 2019; 64: 1823- 1830.
  • 12. Bauer M. RNA in forensic science. Forensic Sci Int Genet 2007; 1: 69-74.
  • 13. Sijen T. Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int Genet 2015; 18: 21-32.
  • 14. Vennemann M, Koppelkamm A. mRNA profiling in forensic genetics I: possibilities and limitations. Forensic Sci Int 2010; 203: 71-75.
  • 15. Glynn CL. Potential applications of microRNA profiling to forensic investigations. RNA 2020; 26: 1-9. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 2010; 124: 217-226.
  • 16. Wang Z, Zhang J, Luo H, Ye Y, Yan J, Hou Y. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int Genet 2013; 7: 116-123.
  • 17. Alshehhi S, Haddrill PR. Estimating time since deposition using quantification of RNA degradation in body fluid-specific markers. Forensic Sci Int 2019; 298: 58-63.
  • 18. Kayser M. Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 2015; 18: 33-48.
  • 19. Parson W. Age Estimationwith DNA: From Forensic DNA Finger printing to Forensic (Epi) Genomics: A Mini-Review. Gerontology 2018; 64(4): 326-332.
  • 20. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 2013;14: 507-515.
  • 21. Schneider PM, Prainsack B, Kayser M. The use of forensic DNA phenotyping in predicting appearance and biogeographic ancestry. Dtsch Arztebl Int 2020; 116: 873- 880.
  • 22. Kukla-Bartoszek M, Pos piech E, Spolnicka M, Karłowska-Pik J, Strapagiel D, Zadzin ska E et. al. Investigating the impact of age depended hair colour darkening during childhood on DNA-based hair colour prediction with the HIrisPlex system. Forensic Sci Int Genet 2018; 36: 26-33.
  • 23. Bird A. Perceptions of epigenetics. Nature 2007; 447: 396-398.
  • 24. Ohgane J, Yagi S, Shiota K. Epigenetics: the DNA methylation profile of tissue dependent and differentially methylated regions in cells. Placenta 2008; 22: 29-35.
  • 25. Vidaki A, Daniel B, Syndercombe Court D. Forensic DNA methylation profiling potential opportunities and challenges. Forensic Sci Int Genet 2013; 7: 499-507.
  • 26. Alghanim H, Wu W, McCord B. DNA methylation assay based on pyrosequencing for determination of smoking status. Electrophoresis 2018; 39: 2806-2814.
  • 27. Vidaki A, Kalamara V, Carnero-Montoro E, Spector TD, Bell JT, Kayser M. Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting. Genes 2018; 9: 252.
  • 28. Richards R, Patel J, Stevenson K, Harbison S. Evaluation of massively parallel sequencing for forensic DNA methylation profiling. Electrophoresis 2018; 39: 2798- 2805.
  • 29. Vidaki A, Kayser M. Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 2018; 37: 180-195.
  • 30. Koch CM, Wagner W. Epigenetic-aging signature to determine age in different tissues. Aging 2011; 3: 1018-1027.
  • 31. Hong SR, Jung SE, Lee EH, Shin KJ, Yang WI, Lee HY. DNA methylation-based age prediction from saliva: high age predictability by combination of 7 CpG markers. Forensic Sci Int Genet 2017; 29: 118-125.
  • 32. Heidegger A, Xavier C, Niederstatter H., de la Puente M, Pospiech E, Pisarek A et. al. Development and optimization of the VISAGE basic prototype tool for forensic age estimation. Forensic Sci Int Genet 2020; 48: 102322. Mateen RM, Sabar MF, Hussain S, Parveen R, Hussain M. Familial DNA analysis and criminal investigation: usage, downsides and privacy concerns. Forensic Sci Int 2021; 318: 110576.
  • 33. Kling D, Phillips C, Kennett, D, Tillmar A. Investigative genetic genealogy: current methods, knowledge and practice. Forensic Sci Int Genet 2021; 52: 102474.
  • 34. Greytak EM, Moore C, Armentrout SL. Genetic genealogy for cold case and active investigations. Forensic Sci Int 2019; 299: 103-113.
  • 35. Chong KWY, Thong Z, Syn CKC. Recent trends and developments in forensic DNA extraction. WIREs Forensic Sci 2020; 3: 1395.
  • 36. Lynch C, Fleming R. A review of direct polymerase chain reaction of DNA and RNA for forensic purposes. WIREs Forensic Sci 2018; 1: 1335.
  • 37. De la Puente, M, Phillips C, Xavier C, Amigo J, Carracedo A, Partson W et al. Building a custom large-scale panel of novel microhaplotypes for forensic identification using miSeq and Ion S5 massively parallel sequencing systems. Forensic Sci Int Genet 2020; 45: 102213.
APA TEKCAN E, tural s (2023). Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. , 217 - 222. 10.5505/vtd.2023.30633
Chicago TEKCAN ESRA,tural sengul Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. (2023): 217 - 222. 10.5505/vtd.2023.30633
MLA TEKCAN ESRA,tural sengul Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. , 2023, ss.217 - 222. 10.5505/vtd.2023.30633
AMA TEKCAN E,tural s Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. . 2023; 217 - 222. 10.5505/vtd.2023.30633
Vancouver TEKCAN E,tural s Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. . 2023; 217 - 222. 10.5505/vtd.2023.30633
IEEE TEKCAN E,tural s "Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler." , ss.217 - 222, 2023. 10.5505/vtd.2023.30633
ISNAD TEKCAN, ESRA - tural, sengul. "Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler". (2023), 217-222. https://doi.org/10.5505/vtd.2023.30633
APA TEKCAN E, tural s (2023). Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. Van Tıp Dergisi, 30(2), 217 - 222. 10.5505/vtd.2023.30633
Chicago TEKCAN ESRA,tural sengul Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. Van Tıp Dergisi 30, no.2 (2023): 217 - 222. 10.5505/vtd.2023.30633
MLA TEKCAN ESRA,tural sengul Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. Van Tıp Dergisi, vol.30, no.2, 2023, ss.217 - 222. 10.5505/vtd.2023.30633
AMA TEKCAN E,tural s Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. Van Tıp Dergisi. 2023; 30(2): 217 - 222. 10.5505/vtd.2023.30633
Vancouver TEKCAN E,tural s Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler. Van Tıp Dergisi. 2023; 30(2): 217 - 222. 10.5505/vtd.2023.30633
IEEE TEKCAN E,tural s "Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler." Van Tıp Dergisi, 30, ss.217 - 222, 2023. 10.5505/vtd.2023.30633
ISNAD TEKCAN, ESRA - tural, sengul. "Adli DNA Analizlerinde Güncel Moleküler Genetik Gelişmeler". Van Tıp Dergisi 30/2 (2023), 217-222. https://doi.org/10.5505/vtd.2023.30633