Yıl: 2023 Cilt: 4 Sayı: 1 Sayfa Aralığı: 1 - 5 Metin Dili: İngilizce DOI: 10.4274/jpea.2023.218 İndeks Tarihi: 16-05-2023

Inherited Bone Marrow Failure Syndromes in Children

Öz:
vInherited bone marrow failure syndromes are disorders of hematopoiesis that are mostly encountered in childhood. Taking the basis from genetics, they are characterized by pancytopenia, increased risk of developing myelodysplastic syndrome and malignancy. Extrahematopoietic presentations are observed often in addition to symptoms related to defective hematopoiesis (also known as bone marrow failure). The biology, clinical features, and management of the main syndromes such as Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, congenital amegakaryocytic thrombocytopenia, Diamond-Blackfan anemia, and severe congenital neutropenia are briefly summarized in this review.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Gök V, Erdem Ş, Haliloğlu Y, et al. Immunodeficiency associated with a novel functionally defective variant of SLC19A1 benefits from folinic acid treatment. Genes Immun. 2023;24:12-20. [Crossref]
  • 2. Shakila K, Myers KC, Newburger P (ed), Negrin RS (ed), Rosmarin AG (ed). Hematopoietic cell transplantation (HCT) for inherited bone marrow failure syndromes (IBMFS). In: UpToDate.; 2021. Accessed March 15, 2023. [Crossref]
  • 3. Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, et al. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol. 2022;12:949435. [Crossref]
  • 4. Green AM, Kupfer GM. Fanconi Anemia. Hematol Oncol Clin North Am. 2009;23:193-214. [Crossref]
  • 5. Park M. Overview of inherited bone marrow failure syndromes. Blood Res. 2022;57(Suppl 1):49-54. [Crossref]
  • 6. Dufour C, Pierri F. Modern management of Fanconi anemia. Hematol Am Soc Hematol Educ Program. 2022;2022:649-657. [Crossref]
  • 7. Olson TS, Newburger P (ed), Rosmarin AG (ed). Clinical manifestations and diagnosis of Fanconi anemia. In: UpToDate.; 2022. Accessed March 15, 2023. [Crossref]
  • 8. Hulick PJ, Raby BA (ed), Tirnauer JS (ed). Next-generation DNA sequencing (NGS): Principles and clinical applications. In: UpToDate.; 2022. Accessed March 15, 2023. [Crossref]
  • 9. Olson TS, Newburger P (ed), Rosmarin AG (ed). Management and prognosis of Fanconi anemia. In: UpToDate.; 2022. Accessed March 18, 2023. [Crossref]
  • 10. Tolar J, Adair JE, Antoniou M, et, al. Stem Cell Gene Therapy for Fanconi Anemia: report from the 1st international Fanconi anemia gene therapy working group meeting. Mol Ther. 2011;19:1193- 1198. [Crossref]
  • 11. Dokal I. Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program. 2011;2011:480-486. [Crossref]
  • 12. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549-6557. [Crossref]
  • 13. Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol. 2015;170:457-471. [Crossref]
  • 14. Kim HY, Kim HJ, Kim SH. Genetics and genomics of bone marrow failure syndrome. Blood Res. 2022;57(Suppl 1):86-92. [Crossref]
  • 15. Sieff C. Diamond-Blackfan Anemia. In: Adam MP, Everman DB, Mirzaa GM, et al., eds. GeneReviews®. University of Washington, Seattle; 1993. Accessed February 5, 2023. [Crossref]
  • 16. Tsangaris E, Klaassen R, Fernandez CV, et al. Genetic analysis of inherited bone marrow failure syndromes from one prospective, comprehensive and population-based cohort and identification of novel mutations. J Med Genet. 2011;48:618-628. [Crossref]
  • 17. Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am. 2018;32:687-700. [Crossref]
  • 18. Calado RT, Graf SA, Wilkerson KL, et al. Mutations in the SBDS gene in acquired aplastic anemia. Blood. 2007;110:1141-1146. [Crossref]
  • 19. Alsavaf MB, Verboon JM, Dogan ME, et al. A novel missense mutation outside the DNAJ domain of DNAJC21 is associated with Shwachman–Diamond syndrome. Br J Haematol. 2022;197:e88-e93. [Crossref]
  • 20. Shwachman-Diamond Syndrome 1; SDS1; MIM Number: {260400}. In: Online Mendelian Inheritance in Man, OMIM®. 22/3/2021 ed. Johns Hopkins University. [Crossref]
  • 21. Dror Y, Freedman MH. Shwachman-Diamond syndrome: An inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood. 1999;94:3048-3054. [Crossref]
  • 22. Cesaro S, Pegoraro A, Sainati L, et al. A Prospective Study of Hematologic Complications and Long-Term Survival of Italian Patients Affected by Shwachman-Diamond Syndrome. J Pediatr. 2020;219:196-201.e1. [Crossref]
  • 23. Stepanovic V, Wessels D, Goldman FD, Geiger J, Soll DR. The chemotaxis defect of Shwachman-Diamond Syndrome leukocytes. Cell Motil Cytoskeleton. [Crossref]
  • 24. Mack DR, Forstner GG, Wilschanski M, Freedman MH, Durie PR. Shwachman syndrome: exocrine pancreatic dysfunction and variable phenotypic expression. Gastroenterology. 1996;111:1593-1602. [Crossref]
  • 25. Booij J, Reneman L, Alders M, Kuijpers TW. Increase in central striatal dopamine transporters in patients with Shwachman- Diamond syndrome: additional evidence of a brain phenotype. Am J Med Genet A. 2013;161A:102-107. [Crossref]
  • 26. Geddis AE. Congenital amegakaryocytic thrombocytopenia: Congenital Amegakaryocytic Thrombocytopenia. Pediatr Blood Cancer. 2011;57:199-203. [Crossref]
  • 27. Fox NE, Chen R, Hitchcock I, Keates-Baleeiro J, Frangoul H, Geddis AE. Compound heterozygous c-Mpl mutations in a child with congenital amegakaryocytic thrombocytopenia: Functional characterization and a review of the literature. Exp Hematol. 2009;37:495-503. [Crossref]
  • 28. King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol. 2005;131:636- 644. [Crossref]
  • 29. Tirthani E, Said MS, De Jesus O. Amegakaryocytic Thrombocytopenia. In: StatPearls. StatPearls Publishing; 2022. Accessed March 12, 2023. [Crossref]
  • 30. Norton T, Newberry D, Jnah A. Neonatal Alloimmune Thrombocytopenia: A Concise Review. Adv Neonatal Care Off J Natl Assoc Neonatal Nurses. 2021;21:115-121. [Crossref]
  • 31. Muraoka K, Ishii E, Tsuji K, et al. Defective response to thrombopoietin and impaired expression of c-mpl mRNA of bone marrow cells in congenital amegakaryocytic thrombocytopenia. Br J Haematol. 1997;96:287-292. [Crossref]
  • 32. Coates TD, Newburger P (ed), Rosmarin AG (ed). Congenital Neutropenia. In: UpToDate.; 2022. Accessed March 15, 2023. [Crossref]
  • 33. Wang J, Zhang H, Wang Y, et al. Severe congenital neutropenia caused by ELANE gene mutation: A case report and literature review. Medicine (Baltimore). 2022;101:e31357. [Crossref]
  • 34. Yılmaz Karapınar D, Patıroğlu T, Metin A, et al. Homozygous c.130-131 ins A (pW44X) mutation in the HAX1 gene as the most common cause of congenital neutropenia in Turkey: Report from the Turkish Severe Congenital Neutropenia Registry. Pediatr Blood Cancer. 2019;66:e27923. [Crossref]
  • 35. Triot A, Järvinen PM, Arostegui JI, et al. Inherited biallelic CSF3R mutations in severe congenital neutropenia. Blood. 2014;123:3811-3817. [Crossref]
  • 36. Goktas S, Azizoglu ZB, Petersheim D, et al. A Novel Intronic Mutation Reduces HAX1 Level and is Associated With Severe Congenital Neutropenia. J Pediatr Hematol Oncol. 2022;44:e62. [Crossref]
  • 37. Linder MI, Mizoguchi Y, Hesse S, et al. Human genetic defects in SRP19 and SRPRA cause severe congenital neutropenia with distinctive proteome changes. Blood. 2023;141:645-658. [Crossref]
APA Ertunç M, Çelik A, Tahiroglu A, UNAL E (2023). Inherited Bone Marrow Failure Syndromes in Children. , 1 - 5. 10.4274/jpea.2023.218
Chicago Ertunç Mehmet Emin,Çelik Ahmet Genar,Tahiroglu Akif,UNAL Ekrem Inherited Bone Marrow Failure Syndromes in Children. (2023): 1 - 5. 10.4274/jpea.2023.218
MLA Ertunç Mehmet Emin,Çelik Ahmet Genar,Tahiroglu Akif,UNAL Ekrem Inherited Bone Marrow Failure Syndromes in Children. , 2023, ss.1 - 5. 10.4274/jpea.2023.218
AMA Ertunç M,Çelik A,Tahiroglu A,UNAL E Inherited Bone Marrow Failure Syndromes in Children. . 2023; 1 - 5. 10.4274/jpea.2023.218
Vancouver Ertunç M,Çelik A,Tahiroglu A,UNAL E Inherited Bone Marrow Failure Syndromes in Children. . 2023; 1 - 5. 10.4274/jpea.2023.218
IEEE Ertunç M,Çelik A,Tahiroglu A,UNAL E "Inherited Bone Marrow Failure Syndromes in Children." , ss.1 - 5, 2023. 10.4274/jpea.2023.218
ISNAD Ertunç, Mehmet Emin vd. "Inherited Bone Marrow Failure Syndromes in Children". (2023), 1-5. https://doi.org/10.4274/jpea.2023.218
APA Ertunç M, Çelik A, Tahiroglu A, UNAL E (2023). Inherited Bone Marrow Failure Syndromes in Children. The journal of pediatric academy (Online), 4(1), 1 - 5. 10.4274/jpea.2023.218
Chicago Ertunç Mehmet Emin,Çelik Ahmet Genar,Tahiroglu Akif,UNAL Ekrem Inherited Bone Marrow Failure Syndromes in Children. The journal of pediatric academy (Online) 4, no.1 (2023): 1 - 5. 10.4274/jpea.2023.218
MLA Ertunç Mehmet Emin,Çelik Ahmet Genar,Tahiroglu Akif,UNAL Ekrem Inherited Bone Marrow Failure Syndromes in Children. The journal of pediatric academy (Online), vol.4, no.1, 2023, ss.1 - 5. 10.4274/jpea.2023.218
AMA Ertunç M,Çelik A,Tahiroglu A,UNAL E Inherited Bone Marrow Failure Syndromes in Children. The journal of pediatric academy (Online). 2023; 4(1): 1 - 5. 10.4274/jpea.2023.218
Vancouver Ertunç M,Çelik A,Tahiroglu A,UNAL E Inherited Bone Marrow Failure Syndromes in Children. The journal of pediatric academy (Online). 2023; 4(1): 1 - 5. 10.4274/jpea.2023.218
IEEE Ertunç M,Çelik A,Tahiroglu A,UNAL E "Inherited Bone Marrow Failure Syndromes in Children." The journal of pediatric academy (Online), 4, ss.1 - 5, 2023. 10.4274/jpea.2023.218
ISNAD Ertunç, Mehmet Emin vd. "Inherited Bone Marrow Failure Syndromes in Children". The journal of pediatric academy (Online) 4/1 (2023), 1-5. https://doi.org/10.4274/jpea.2023.218