Yıl: 2023 Cilt: 32 Sayı: 1 Sayfa Aralığı: 8 - 15 Metin Dili: İngilizce DOI: 10.5152/turkjnephrol.2023.22103385 İndeks Tarihi: 17-05-2023

Autophagy and Autosomal Dominant Polycystic Kidney Disease

Öz:
Autophagy is a protective mechanism that ensures cell survival. The mammalian target of rapamycin is the main regula- tor of autophagy, and mammalian target of rapamycin activation suppresses autophagy. Mammalian target of rapamycin inhibitors, like sirolimus, activate autophagy. Disorders in autophagy regulation are of central importance in many patho- physiological conditions. In the kidney, autophagy is dysregulated in autosomal dominant polycystic kidney disease, acute kidney injury, podocytopathies, transplant rejection, cold preservation ischemia, kidney aging, glomerular disease, and diabetic nephropathy. There are reasons to suspect that autophagy is dysregulated in autosomal dominant polycystic kid- ney disease. Pkd1 and 2 genes can control autophagy. There is abnormal autophagy in Pkd1 cells and polycystic kidney disease. Mammalian target of rapamycin inhibitors that activate autophagy slow cyst growth. Evidence emerging in poly- cystic kidney disease cells and polycystic kidney disease animal models shows that direct autophagy inhibition/activation affects cyst growth. The review will focus on the autophagy process, pathways that regulate autophagy, autophagy and kidney pathophysiology, and autophagy and autosomal dominant polycystic kidney disease.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24(1):9-23. [CrossRef]
  • 2. Wang Z, Choi ME. Autophagy in kidney health and disease. Anti oxid Redox Signal. 2014;20(3):519-537. [CrossRef]
  • 3. Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging. Autophagy. 2012;8(7):1009-1031. [CrossRef]
  • 4. Choi AM, Ryter SW, Levine B. Autophagy in human health and dis ease. N Engl J Med. 2013;368(7):651-662. [CrossRef]
  • 5. Nowak KL, Edelstein CL. Apoptosis and autophagy in polycystic kidney disease (PKD). Cell Signal. 2020;68:109518. [CrossRef]
  • 6. Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edi tion). Autophagy. 3rd ed. 2016;12(1):1-222. [CrossRef]
  • 7. Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 2012;31(13):2852-2868. [CrossRef]
  • 8. Choi ME. Autophagy in kidney disease. Annu Rev Physiol. 2020;82(1):297-322. [CrossRef]
  • 9. Kim HJ, Edelstein CL. Mammalian target of rapamycin inhibition in polycystic kidney disease: from bench to bedside. Kidney Res Clin Pract. 2012;31(3):132-138. [CrossRef]
  • 10. Itakura E, Mizushima N. Characterization of autophagosome for mation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6(6):764-776. [CrossRef]
  • 11. Aspernig H, Heimbucher T, Qi W, et al. Mitochondrial perturba tions couple mTORC2 to autophagy in C. elegans. Cell Rep. 2019;29(6):1399-1409.e5. [CrossRef]
  • 12. Chiang CK, Wang CC, Lu TF, et al. Involvement of endoplasmic reticulum stress, autophagy and apoptosis in advanced glycation end products-induced glomerular mesangial cell injury. Sci Rep. 2016;6(1):34167. [CrossRef]
  • 13. Baan CC, Kannegieter NM, Felipe CR, Tedesco Silva Jr HT. Target ing JAK/STAT signaling to prevent rejection after kidney transplan tation: a reappraisal. Transplantation. 2016;100(9):1833-1839. [CrossRef]
  • 14. Hu P, Lai D, Lu P, Gao J, He H. ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int J Mol Med. 2012;29(4):613- 618. [CrossRef]
  • 15. Shi M, Yang S, Zhu X, et al. The RAGE/STAT5/autophagy axis regu lates senescence in mesangial cells. Cell Signal. 2019;62:109334. [CrossRef]
  • 16. Wharram BL, Goyal M, Wiggins JE, et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin–induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16(10):2941-2952. [CrossRef]
  • 17. Cinà DP, Onay T, Paltoo A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012;23(3):412- 420. [CrossRef]
  • 18. Li L, Wang ZV, Hill JA, Lin F. New autophagy reporter mice reveal dynamics of proximal tubular autophagy. J Am Soc Nephrol. 2014;25(2):305-315. [CrossRef]
  • 19. Shintani T, Klionsky DJ. Autophagy in health and disease: a dou ble-edged sword. Science. 2004;306(5698):990-995. [CrossRef]
  • 20. Kimura T, Takabatake Y, Takahashi A, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011;22(5):902-913. [CrossRef]
  • 21. Guan X, Qian Y, Shen Y, et al. Autophagy protects renal tubular cells against ischemia/reperfusion injury in a time-dependent manner. Cell Physiol Biochem. 2015;36(1):285-298. [CrossRef]
  • 22. Peintner L, Venkatraman A, Waeldin A, et al. Loss of PKD1/polycys tin-1 impairs lysosomal activity in a CAPN (calpain)-dependent manner. Autophagy. 2021;17(9):2384-2400. [CrossRef]
  • 23. Ramírez-Sagredo A, Quiroga C, Garrido-Moreno V, et al. Polycystin-1 regulates cardiomyocyte mitophagy. FASEB J. 2021;35(8):e21796. [CrossRef]
  • 24. Lu J, Boheler KR, Jiang L, et al. Polycystin-2 plays an essential role in glucose starvation-induced autophagy in human embryonic stem cell-derived cardiomyocytes. Stem Cells. 2018;36(4):501-513. [CrossRef]
  • 25. Peña-Oyarzun D, Rodriguez-Peña M, Burgos-Bravo F, et al. PKD2/ polycystin-2 induces autophagy by forming a complex with BECN1. Autophagy. 2021;17(7):1714-1728. [CrossRef]
  • 26. Criollo A, Altamirano F, Pedrozo Z, et al. Polycystin-2-dependent control of cardiomyocyte autophagy. J Mol Cell Cardiol. 2018;118:110-121. [CrossRef]
  • 27. Cebotaru V, Cebotaru L, Kim H, et al. Polycystin-1 negatively regu lates Polycystin-2 expression via the aggresome/autophagosome pathway. J Biol Chem. 2014;289(10):6404-6414. [CrossRef]
  • 28. Belibi F, Zafar I, Ravichandran K, et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD). Am J Physiol Ren Physiol. 2011;300(5):F1235-F1243. [CrossRef]
  • 29. Zhu P, Sieben CJ, Xu X, Harris PC, Lin X. Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Hum Mol Genet. 2017;26(1):158-172. [CrossRef]
  • 30. Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabo lism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med. 2013;19(4):488-493. [CrossRef]
  • 31. Masyuk AI, Masyuk TV, Lorenzo Pisarello MJ, et al. Cholangiocyte autophagy contributes to hepatic cystogenesis in polycystic liver disease and represents a potential therapeutic target. Hepatology. 2018;67(3):1088-1108. [CrossRef]
  • 32. Chou LF, Cheng YL, Hsieh CY, et al. Effect of trehalose supplemen tation on autophagy and cystogenesis in a mouse model of poly cystic kidney disease. Nutrients. 2018;11(1):42. [CrossRef]
  • 33. Ravichandran K, Zafar I, He Z, et al. An mTOR anti-sense oligonu cleotide decreases polycystic kidney disease in mice with a tar geted mutation in Pkd2. Hum Mol Genet. 2014;23(18):4919-4931. [CrossRef]
  • 34. Holditch SJ, Brown CN, Atwood DJ, et al. The consequences of increased 4E-BP1 in polycystic kidney disease. Hum Mol Genet. 2019;28(24):4132-4147. [CrossRef]
  • 35. Zafar I, Belibi FA, He Z, Edelstein CL. Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant. 2009;24(8):2349-2353. [CrossRef]
  • 36. Becker JU, Opazo Saez A, Zerres K, et al. The mTOR pathway is activated in human autosomal-recessive polycystic kidney dis ease. Kidney Blood Press Res. 2010;33(2):129-138. [CrossRef]
  • 37. Fischer DC, Jacoby U, Pape L, et al. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol Dial Transplant. 2009;24(6):1819-1827. [CrossRef]
  • 38. Yim NH, Jung YP, Kim A, Ma CJ, Cho WK, Ma JY. Oyaksungisan, a traditional herbal formula, inhibits cell proliferation by induc tion of autophagy via JNK activation in human colon cancer cells. Evid Based Complement Alternat Med. 2013;2013:231874. [CrossRef]
  • 39. Giansanti V, Torriglia A, Scovassi AI. Conversation between apop tosis and autophagy: “Is it your turn or mine?” Apoptosis. 2011;16(4):321-333. [CrossRef]
  • 40. Kaushal GP, Kaushal V, Herzog C, Yang C. Autophagy delays apop tosis in renal tubular epithelial cells in cisplatin cytotoxicity. Autophagy. 2008;4(5):710-712. [CrossRef]
  • 41. Huber TB, Walz G, Kuehn EW. mTOR and rapamycin in the kidney: signaling and therapeutic implications beyond immunosuppres sion. Kidney Int. 2011;79(5):502-511. [CrossRef]
  • 42. Zafar I, Ravichandran K, Belibi FA, Doctor RB, Edelstein CL. Siroli mus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 2010;78(8):754-761. [CrossRef]
  • 43. Shillingford JM, Piontek KB, Germino GG, Weimbs T. Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1. J Am Soc Nephrol. 2010;21(3):489-497. [CrossRef]
  • 44. Tao Y, Kim J, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol. 2005;16(1):46-51. [CrossRef]
  • 45. Atwood DJ, Brown CN, Holditch SJ, et al. The effect of trehalose on autophagy-related proteins and cyst growth in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney dis ease. Cell Signal. 2020;75:109760. [CrossRef]
  • 46. Boehlke C, Kotsis F, Patel V, et al. Primary cilia regulate mTORC1 activity and cell size through LKB1. Nat Cell Biol. 2010;12(11):1115- 1122. [CrossRef]
  • 47. Bell PD, Fitzgibbon W, Sas K, et al. Loss of primary cilia upregulates renal hypertrophic signaling and promotes cystogenesis. J Am Soc Nephrol. 2011;22(5):839-848. [CrossRef]
  • 48. Wang S, Livingston MJ, Su Y, Dong Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy. 2015;11(4):607-616. [CrossRef]
  • 49. Lenoir O, Tharaux PL, Huber TB. Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int. 2016;90(5):950-964. [CrossRef]
  • 50. Tang Z, Lin MG, Stowe TR, et al. Autophagy promotes primary cili ogenesis by removing OFD1 from centriolar satellites. Nature. 2013;502(7470):254-257. [CrossRef]
  • 51. Pampliega O, Orhon I, Patel B, et al. Functional interaction between autophagy and ciliogenesis. Nature. 2013;502(7470):194-200. [CrossRef]
  • 52. Dong K, Zhang C, Tian X, et al. Renal plasticity revealed through reversal of polycystic kidney disease in mice. Nat Genet. 2021;53(12):1649-1663. [CrossRef]
  • 53. Shi W, Xu D, Gu J, et al. Saikosaponin-d inhibits proliferation by up-regulating autophagy via the CaMKKβ-AMPK-mTOR pathway in ADPKD cells. Mol Cell Biochem. 2018;449(1-2):219-226. [CrossRef]
  • 54. Sun L, Hu C, Zhang X. Histone deacetylase inhibitors reduce cysts by activating autophagy in polycystic kidney disease. Kidney Dis (Basel). 2019;5(3):163-172. [CrossRef]
  • 55. Liu G, Kang X, Guo P, et al. miR-25-3p promotes proliferation and inhibits autophagy of renal cells in polycystic kidney mice by regu lating ATG14-Beclin 1. Ren Fail. 2020;42(1):333-342. [CrossRef]
  • 56. Chang MY, Ma TL, Hung CC, et al. Metformin inhibits cyst formation in a zebrafish model of Polycystin-2 deficiency. Sci Rep. 2017;7(1):7161. [CrossRef]
  • 57. Lee EJ, Ko JY, Oh S, et al. Autophagy induction promotes renal cyst growth in polycystic kidney disease. EBiomedicine. 2020;60:102986. [CrossRef]
APA Oto O, Edelstein C (2023). Autophagy and Autosomal Dominant Polycystic Kidney Disease. , 8 - 15. 10.5152/turkjnephrol.2023.22103385
Chicago Oto Ozgur Akin,Edelstein Charles Autophagy and Autosomal Dominant Polycystic Kidney Disease. (2023): 8 - 15. 10.5152/turkjnephrol.2023.22103385
MLA Oto Ozgur Akin,Edelstein Charles Autophagy and Autosomal Dominant Polycystic Kidney Disease. , 2023, ss.8 - 15. 10.5152/turkjnephrol.2023.22103385
AMA Oto O,Edelstein C Autophagy and Autosomal Dominant Polycystic Kidney Disease. . 2023; 8 - 15. 10.5152/turkjnephrol.2023.22103385
Vancouver Oto O,Edelstein C Autophagy and Autosomal Dominant Polycystic Kidney Disease. . 2023; 8 - 15. 10.5152/turkjnephrol.2023.22103385
IEEE Oto O,Edelstein C "Autophagy and Autosomal Dominant Polycystic Kidney Disease." , ss.8 - 15, 2023. 10.5152/turkjnephrol.2023.22103385
ISNAD Oto, Ozgur Akin - Edelstein, Charles. "Autophagy and Autosomal Dominant Polycystic Kidney Disease". (2023), 8-15. https://doi.org/10.5152/turkjnephrol.2023.22103385
APA Oto O, Edelstein C (2023). Autophagy and Autosomal Dominant Polycystic Kidney Disease. Turkish journal of nephrology (Online), 32(1), 8 - 15. 10.5152/turkjnephrol.2023.22103385
Chicago Oto Ozgur Akin,Edelstein Charles Autophagy and Autosomal Dominant Polycystic Kidney Disease. Turkish journal of nephrology (Online) 32, no.1 (2023): 8 - 15. 10.5152/turkjnephrol.2023.22103385
MLA Oto Ozgur Akin,Edelstein Charles Autophagy and Autosomal Dominant Polycystic Kidney Disease. Turkish journal of nephrology (Online), vol.32, no.1, 2023, ss.8 - 15. 10.5152/turkjnephrol.2023.22103385
AMA Oto O,Edelstein C Autophagy and Autosomal Dominant Polycystic Kidney Disease. Turkish journal of nephrology (Online). 2023; 32(1): 8 - 15. 10.5152/turkjnephrol.2023.22103385
Vancouver Oto O,Edelstein C Autophagy and Autosomal Dominant Polycystic Kidney Disease. Turkish journal of nephrology (Online). 2023; 32(1): 8 - 15. 10.5152/turkjnephrol.2023.22103385
IEEE Oto O,Edelstein C "Autophagy and Autosomal Dominant Polycystic Kidney Disease." Turkish journal of nephrology (Online), 32, ss.8 - 15, 2023. 10.5152/turkjnephrol.2023.22103385
ISNAD Oto, Ozgur Akin - Edelstein, Charles. "Autophagy and Autosomal Dominant Polycystic Kidney Disease". Turkish journal of nephrology (Online) 32/1 (2023), 8-15. https://doi.org/10.5152/turkjnephrol.2023.22103385