Yıl: 2022 Cilt: 28 Sayı: 7 Sayfa Aralığı: 963 - 970 Metin Dili: İngilizce DOI: 10.5505/pajes.2022.43247 İndeks Tarihi: 18-05-2023

Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves

Öz:
In this study, the aim was to microwave dry Eucalyptus camaldulensis Dehnh. leaves, while evaluating the role of microwave power regarding drying behavior, drying rate, drying time, drying kinetics, moisture diffusivity, energy consumption and essential oil yield. The leaves were dried by microwave at four different power levels (180, 360, 600 and 720 W). The results found that increasing the increment power levels decreased the time for drying and increased the drying rate. To fit the experimental data, nine widely used thin layer drying kinetics models were used. The analysis of the drying curves indicated that the Page model was the most appropriate. There was a significant difference in moisture diffusivity between 2.36×10-11 and 11.45×10-11m2/s. Increasing microwave power was led to an increase in moisture diffusivity. In accordance with the Arrhenius equation, a value of 7.4225 W/g was determined for the activation energy. In terms of specific energy consumption, the results ranged from 8.56 to 9.93 kWh/kg. When leaves were dried with a microwave power of 180 W, the maximum yield of essential oil was obtained.
Anahtar Kelime:

Mikrodalga gücünün mikrodalgada kurutulmuş Eucalyptus camaldulensis Dehnh. yapraklarının kuruma davranışı ve uçucu yağ verimi üzerine etkisi

Öz:
Bu çalışmada, Okaliptüs camaldulensis Dehnh. yapraklarının mikrodalga kurutulması bu esnada mikrodalga gücünün kuruma davranışı, kuruma hızı, kuruma süresi, kuruma kinetiği, nem diffüzivitesi, enerji tüketimi ve uçucu yağ verimi üzerindeki etkisinin değerlendirilmesi amaçlanmıştır. Yapraklar dört farklı mikrodalga güç seviyesinde (180, 360, 600 ve 720 W) kurutulmuştur. Sonuçlar, artan güç seviyelerinin kuruma süresini azalttığını ve kuruma hızının arttığını göstermiştir. Deneysel veriler, yaygın olarak kullanılan dokuz ince tabaka kurutma kinetiği modeline uydurulmuş ve Page modelinin kurutma eğrilerine uyan en iyi model olduğu bulunmuştur. Efektif nem diffüzivitesi 2.36×10-11–11.45×10-11m2/s aralığında bulunmuştur. Artan mikrodalga gücü, nem yayılımında bir artışa yol açmıştır. Aktivasyon enerjisi Arrhenius denklemine göre 7.4225 W/g olarak belirlenmiştir. Spesifik enerji tüketimi 8.56 ile 9.93 kWh/kg arasında değişmektedir. Maksimum uçucu yağ verimi, 180 W mikrodalga gücünde kurutulan yapraklardan elde edilmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Darvishi H, Banakar A, Zarein M. “Mathematical modeling and thin layer drying kinetics of carrot slices”. Global Journal of Science Frontier Research Mathematics and Decision Sciences, 12(7), 56-64, 2012.
  • [2] Azimi-Nejadian H, Hoseini SS. “Study the effect of microwave power and slices thickness on drying characteristics of potato”. Heat and Mass Transfer, 55, 2921-2930, 2019.
  • [3] Izli G, Taskin O, Izli N. “Convective, microwave and combined microwave-convective drying of pepino”. Erwerbs-Obstbau, 63, 175-184, 2021.
  • [4] Torki-Harchegani M, Ghanbarian D, Pirbalouti AG. “Dehydration behavior, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments”. Renewable and Sustainable Energy Reviews, 58, 407-418, 2016.
  • [5] Elhussein EAA, Şahin S. “Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods”. Heat and Mass Transfer, 54, 1901-1911, 2018.
  • [6] Alibas I. “Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy”. Food Science and Technology, 34(2), 394-401, 2014.
  • [7] Yilmaz A, Alibas I. “Determination of Microwave and Convective Drying Characteristics of Coriander Leaves”. Journal of Biological Environmental. Science, 11(32), 75-85, 2017.
  • [8] Gölcü M, Şen F. “Mikrodalga ile Islak Viyolün Kurutulabilirliğinin Deneysel Olarak İncelenmesi“ Pamukkale Üniversites, Mühendislik Bilimleri Dergisi, 20(4), 111-115, 2014.
  • [9] Sarimeseli A. “Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves”. Energy Conversion and Management, 52(2), 1449-1453, 2011.
  • [10] Soysal Y. “Microwave drying characteristics of parsley”. Biosystems Engineering, 89(2), 167-173, 2004.
  • [11] Kapoor A, Sutar P. “Finish drying and surface sterilization of bay leaves by microwaves“. 21. International Drying Symposium, Valencia, Spain 11-14 September 2018.
  • [12] Demirhan E, Ozbek B. “Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment“. Chemical Engineering Communications, 7(198), 957-975, 2011.
  • [13] Motevali A, Minaei S, Banakar A, Ghobadian B, Darvishi H. “Energy analyses and drying kinetics of chamomile leaves in microwave- convective dryer”. Journal of the Saudi Society of Agricultural Sciences, 15, 179-187, 2016.
  • [14] Alibas I. “Characteristics of chard leaves during microwave, convective, and combined microwave- convective drying ”. Drying Technol, 24, 1425-1435, 2006.
  • [15] Pirbalouti AG, Salehi S, Craker L. “Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander”. Journal of Applied Research on Medicinal and Aromatic Plants, 4, 35-40, 2017.
  • [16] Alibas I. “Microwave, Air and Combined Microwave-Air Drying of Grape Leaves (Vitis vinifera L.) and the Determination of Some Quality Parameters”. International Journal of Food Engineering, 10(1), 69-88, 2014.
  • [17] Dadali G, Özbek B. “Microwave heat treatment of leek: dry- ing kinetic and effective moisture diffusivity”. International. Journal of Food Science&Technol, 43, 1443-1451, 2008.
  • [18] Soysal Y. “Mathematical Modeling and Evaluation of Microwave Drying Kinetics of Mint (Mentha spicata L.)”. Journal of Applied Sciences, 5(7), 1266-1274, 2005.
  • [19] Alibas I. “Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying”. Biosystems Engineering, 96(4), 495-502, 2007.
  • [20] Alibas I. “Determination of drying parameters ascorbic acid contents and color characteristics of nettle leaves during microwave-air-drying”. Journal of Food Process Engineering, 33, 213-233, 2007.
  • [21] Arslan D, Özcan MM, Mengeş HO. “Evaluation of drying methods with respect to drying parameters, some nutritional and color characteristics of peppermint (Mentha x piperita L.)”. Energy Convers Management, 51, 2769-2775, 2010.
  • [22] Torki-Hachegani M, Ghanbarian D, Ghasemi Pirbalouti A, Sadeghi M. “Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments”. Renewable Sustainable Energy Reviews, 58, 407-418, 2016.
  • [23] Arslan D, Özcan MM. “Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves”. Energy Conversion and Management, 49, 1258-1264, 2008.
  • [24] Alibas Ozkan I, Akbudak B, Akbudak N. “Microwave drying characteristics of spinach”. Journal of Food Engineering, 78, 577-583, 2007.
  • [25] Beigi M. “Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy”. Heat Mass Transfer, 53, 2711-2718, 2017.
  • [26] Türkan B, Etemoğlu AB. “Experimental and theoretical investigation of drying kinetics of banana slices”. Pamukkale Üniversites, Mühendislik Bilimleri Dergisi, 26(4), 643-653, 2020.
  • [27] Karakaplan N, Goz E, Tosun E, Yuceer M. “Kinetic and artificial neural network modeling techniques to predict the drying kinetics of mentha spicata l”. Journal of Food Processing and Preservation, 2019. https://doi.org/10.1111/jfpp.14142.
  • [28] Ndiaye EHB, Gueye MT, Diop SM, Thiam A, Sanghare CH, Diop MB, Fauconnier ML. “Chemical composition of essential oils and floral waters of eucalyptus camaldulensis (Dehnh) from two locations in Senegal”. Journal of Applied Biological Sciences, 15(3), 318-329, 2021.
  • [29] Dogan G, Kara N, Bagci E, Gur S. “Chemical composition and biological activities of leaf and fruit essential oils from Eucalyptus camaldulensis”. Zeitschrift für Naturforschung, 72(11), 483-489, 2017.
  • [30] Kheder DA, Al-Habib OAM, Gilardoni G, Vidari G. “Components of volatile fractions from Eucalyptus camaldulensis leaves from Iraqi-Kurdistan and their potent spasmolytic effects”. Molecules, 2020. https://doi.org/10.3390/molecules25040804.
  • [31] Sefidkon F, Assareh MH, Abravesh Z, Mirza M. “Chemical composition of the essential oils of five cultivated eucalyptus species in Iran: E. intertexta, E. platypus, E. leucoxylon, E. sargentii and E. camaldulensis”. Journal of Essential oil-bearing Plants, 9(3), 245-250, 2006.
  • [32] Ndiaye EHB, Diop MB, Gueye MT, Ndiaye I, Diop SM, Fauconnier ML, Lognay G. “Characterization of essential oil and hydrosols from senegalese eucalyptus camaldulensis Dehnhn”. Journal of Essential oil Research, 30(2), 131-141, 2018.
  • [33] Fathi E, Sefidkon F. “Influence of drying and extraction methods on yield and chemical composition of the essential oil of Eucalyptus sargentii”. Journal of Agriculture, Science and Technology, 14, 1035-1042, 2012.
  • [34] Pirbalouti AG, Mahdad EA, Craker L. “Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces”. Food Chemistry, 141(3), 2440-2449, 2013.
  • [35] Rahimmalek M, Goli SAH. “Evaluation of six drying treatments with respect to essential oil yield: compostion and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves”. Industrial Crops and Products, 42, 613-619, 2013.
  • [36] Lewis WK. “The rate of drying of solid materials”. Journal of Industrial & Engineering Chemistry, 13, 427-432, 1921.
  • [37] Midilli A, Kuçuk H, Yapar Z. “A new model for single layer drying”. Drying Technology, 20(7), 1503-1513, 2002.
  • [38] Page GE. Factors Influencing the Maximum Rates of Air- Drying Shelled Corn in Thin Layers. M.S. Thesis, Purdue University, Indiana, ABD, 1949.
  • [39] Kassem AS. “Comparative studies on thin layer drying models for wheat”. Proceedings of the 13th International Congress on Agricultural Engineering, Rabat, Morocco, 2-6 February 1998.
  • [40] Henderson SM, Pabis S. “Grain drying theory II. Temperature effects on drying coefficients”. Journal of Agricultural Engineering Research, 6, 169-174, 1961.
  • [41] Karathanos, VT. “Determination of water content of dried fruits by drying kinetics”. Journal of Food Engineering, 39, 337-344, 1999.
  • [42] Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. “A model for ear corn drying”. American Society of Agricultural and Biological Engineers, 23(5), 1261-1265, 1980.
  • [43] Yagcioglu A, Degirmencioglu A, Cagatay F. “Drying characteristic of laurel leaves under different conditions “. 7. International Congress on Agricultural Mechanization and Energy, Adana, Turkey, 26-27 May 1999.
  • [44] Overhults DG, White GM, Hamilton HE, Ross IJ. “Drying soybeans with heated air”. Transactions of The ASAE, 16(1), 112-113, 1973.
  • [45] Crank J. The Mathematics of Diffusion. 2nd ed. UK, Oxford University Press, Oxford, 1975.
  • [46] Taghinezhad E, Kaveh M, Jahanbakhshi A, Golpour I. “Use of artificial intelligence for the estimation of effective moisture diffusivity, specific energy consumption, color and shrinkage in quince drying”. Journal of Food Process Engineering, 2020. https://doi.org/10.1111/jfpe.13358.
  • [47] Soysal Y, Ayhan Z, Eştürk O, Arıkan M. “Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality”. Biosystems Engineering, 103, 455-463, 2009.
  • [48] Yılmaz P, Demirhan E, Özbek B. “Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves”. Journal of Food Process Engineering, 2021. https://doi.org/10.1111/jfpe.13831.
  • [49] Sellami IH, Wannes WA, Bettaieb I, Berrima S, Chahed T, Marzouk B, Limam F. “Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods”. Food Chemistry, 26, 691-769, 2011.
APA ŞENGÜL B, TOSUN E (2022). Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. , 963 - 970. 10.5505/pajes.2022.43247
Chicago ŞENGÜL Behlül Ertuğrul,TOSUN Emir Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. (2022): 963 - 970. 10.5505/pajes.2022.43247
MLA ŞENGÜL Behlül Ertuğrul,TOSUN Emir Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. , 2022, ss.963 - 970. 10.5505/pajes.2022.43247
AMA ŞENGÜL B,TOSUN E Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. . 2022; 963 - 970. 10.5505/pajes.2022.43247
Vancouver ŞENGÜL B,TOSUN E Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. . 2022; 963 - 970. 10.5505/pajes.2022.43247
IEEE ŞENGÜL B,TOSUN E "Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves." , ss.963 - 970, 2022. 10.5505/pajes.2022.43247
ISNAD ŞENGÜL, Behlül Ertuğrul - TOSUN, Emir. "Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves". (2022), 963-970. https://doi.org/10.5505/pajes.2022.43247
APA ŞENGÜL B, TOSUN E (2022). Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(7), 963 - 970. 10.5505/pajes.2022.43247
Chicago ŞENGÜL Behlül Ertuğrul,TOSUN Emir Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28, no.7 (2022): 963 - 970. 10.5505/pajes.2022.43247
MLA ŞENGÜL Behlül Ertuğrul,TOSUN Emir Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.28, no.7, 2022, ss.963 - 970. 10.5505/pajes.2022.43247
AMA ŞENGÜL B,TOSUN E Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 28(7): 963 - 970. 10.5505/pajes.2022.43247
Vancouver ŞENGÜL B,TOSUN E Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 28(7): 963 - 970. 10.5505/pajes.2022.43247
IEEE ŞENGÜL B,TOSUN E "Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28, ss.963 - 970, 2022. 10.5505/pajes.2022.43247
ISNAD ŞENGÜL, Behlül Ertuğrul - TOSUN, Emir. "Effect of microwave power on drying behavior and essential oil yield of microwave dried Eucalyptus camaldulensis Dehnh. leaves". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 28/7 (2022), 963-970. https://doi.org/10.5505/pajes.2022.43247