Yıl: 2022 Cilt: 11 Sayı: 3 Sayfa Aralığı: 201 - 212 Metin Dili: Türkçe DOI: 10.5336/pharmsci.2022-89865 İndeks Tarihi: 18-05-2023

Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme

Öz:
Herpes simpleks virüsleri (HSV), 2500 yıldan uzun süredir ha- yatımızda olan ve her y ıl 23 milyondan fazla yeni vaka ile dünya ça- pında en sık rastlanılan viral enfeksiyonlara neden olmaktadır. Herpes virüslerinin ayırt edici özelliği, tekrarlayan enfeksiyonlar üretme yete- nekleridir. Bu virüslerin neden olduğu enfeksiyonlar, dünya çapında en yaygın viral enfeksiyonlardandır ve yaşam boyu belirli aralıklarla en- feksiyona yol açabilirler. HSV-1 enfeksiyonlar ı, öncelikle dudak ve ağız içi kabarcıklar ve inflamasyon dâhil olmak üzere hafif semptom- larla ilişkilidir. Ancak baz ı durumlarda körlük, i şitme bozukluğu ve ölümcül ensefalit gibi daha ciddi hastal ıklara neden olabilmektedir. HSV-1 nöronal enfeksiyonunun Alzheimer hastalığının patogenezinde rol oynayabileceğine dair artan kan ıtlar da bulunmaktad ır. Benzer şe- kilde, HSV-2 enfeksiyonları hafif genital lezyonlara neden olabilmek- tedir. Ayrıca insan immün yetmezlik virüsü enfeksiyonlarını edinme ve iletme riskini artırabilmektedir. HSV enfeksiyonları, hem doğal hem de adaptif bağışıklığı tetikler. Bu enfeksiyonların spesifik bir tedavisi yok- tur. Hafif komplikasyonlar arasında olan yaralar genellikle tedaviye ih- tiyaç duyulmaks ızın geçmektedir. HSV, dünya çap ında yayg ın bir enfeksiyon olması, ciddi klinik sonuçları olan yaşam boyu enfeksiyon- lara neden olması nedeniyle bu virüse karşı profilaktik ve terapötik aşı geliştirme çalışmaları devam etmektedir. Bugüne kadar alt ünite, canl ı zayıflatılmış, replikasyon kusurlu virüs bazl ı, nükleik asit temelli bir- çok aşı geliştirilmiş olmasına rağmen geliştirilen hiçbir a şı beklenilen oranda koruma sa ğlayamamıştır. Bu geleneksel derlemede, HSV hak- kında genel bilgiler verilerek mevcut aşı çalışmaları değerlendirilmiştir.
Anahtar Kelime:

Herpes Simplex Viruses and Vaccine Studies: A Traditional Review

Öz:
Herpes simplex viruses (HSV) have been in our lives for more than 2500 years. It causes the most common viral infections worldwide, with more than 23 million new cases each year. A dis- tinctive feature of herpes viruses is their ability to produce recurrent infections. Infections caused by these viruses are among the most common viral infections worldwide and can lead to infection at cer- tain intervals throughout life. HSV-1 infections are primarily associ- ated with mild symptoms, including blisters and inflammation of the mouth and lips, but in some cases can cause more serious diseases such as blindness, hearing impairment and fatal encephalitis. There is also increasing evidence that HSV-1 neuronal infection may play a role in the pathogenesis of Alzheimer’s disease. Similarly, HSV-2 in- fections can cause mild genital lesions. It may also increase the risk of acquiring and transmitting human immunodeficiency virus infec- tions. HSV infections trigger both innate and adaptive immunity. There is no specific treatment for these infections. Wounds with mild complications usually heal without the need for treatment. As HSV is a common infection worldwide and has serious clinical consequences and causes lifelong infections, prophylactic and therapeutic vaccine development studies are ongoing against this virus. Although many subunit, live attenuated, replication-defective virus-based and nucleic acid-based vaccines have been developed to date, none of the vac- cines developed have been able to provide protection at the expected level. In this traditional review, current vaccine studies were evaluated by giving general information about HSV.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Roizman B, Knipe D, Whitley R. Herpes simplex viruses. In: Knipe D, Howley P, eds. Fields Virology. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p.1823-97.
  • 2. Beswick TS. The origin and the use of the word herpes. Med Hist. 1962;6(3):214-32. [Crossref] [PubMed] [PMC]
  • 3. Bradley H, Markowitz LE, Gibson T, McQuillan GM. Seroprevalence of herpes simplex virus types 1 and 2--United States, 1999-2010. J Infect Dis. 2014;209(3):325-33. [Crossref] [PubMed]
  • 4. Reske A. The innate immune response to HSV-1: glycoprotein mediated activation of dendritic cells. [Doctoral thesis]. London: University College London, Department of Immunology; 2009. Erişim tarihi: 20 Mart 2022. Erişim linki: [Link]
  • 5. Lan K, Luo MH. Herpesviruses: epidemiology, pathogenesis, and inter- ventions. Virol Sin. 2017;32(5):347-8. [Crossref] [PubMed] [PMC]
  • 6. Liu F, Zhou ZH. Comparative virion structures of humanherpesviruses. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al, eds. Chapter 3. Human Herpesviruses: Biology, Ther- apy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007.
  • 7. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57(5):448-62. [Crossref] [PubMed] [PMC]
  • 8. Ashley RL. Sorting out the new HSV type specific antibody tests. Sex Transm Infect. 2001;77(4):232-7. [Crossref] [PubMed] [PMC]
  • 9. Plotkin SA, Orestein WA, Offit PA, Edwards KM. 7th ed. Plotkin's Vac- cines. Chapter 28. Amsterdam: Elsevier; 2017.
  • 10. Karasneh GA, Shukla D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J. 2011;8:481. [Crossref] [PubMed] [PMC]
  • 11. Cooper RS, Georgieva ER, Borbat PP, Freed JH, Heldwein EE. Struc- tural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat Struct Mol Biol. 2018;25(5):416-24. [Crossref] [PubMed] [PMC]
  • 12. Gianni T, Salvioli S, Chesnokova LS, Hutt-Fletcher LM, Campadelli- Fiume G. αvβ6- and αvβ8-integrins serve as interchangeable recep- tors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog. 2013;9(12):e1003806. [Crossref] [PubMed] [PMC]
  • 13. Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH. Herpes virus fusion and entry: a story with many characters. Viruses. 2012;4(5):800-32. [Crossref] [PubMed] [PMC]
  • 14. Fontana J, Atanasiu D, Saw WT, Gallagher JR, Cox RG, Whitbeck JC, et al. The fusion loops of the initial prefusion conformation of herpes sim- plex virus 1 fusion protein point toward the membrane. mBio. 2017;8(4):e01268-17. [Crossref] [PubMed] [PMC]
  • 15. Weed DJ, Nicola AV. Herpes simplex virus membrane fusion. Adv Anat Embryol Cell Biol. 2017;223:29-47. [Crossref] [PubMed] [PMC]
  • 16. Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol. 2019;29(4):e2054. [Crossref] [PubMed] [PMC]
  • 17. Koelle DM. Immunobiology and host response. In: Arvin A, Campadelli- Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., eds. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cam- bridge: Cambridge University Press; 2007.
  • 18. Campadelli-Fiume G, Menotti L, Avitabile E, Gianni T. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr Opin Virol. 2012;2(1):28-36. [Crossref] [PubMed]
  • 19. Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol. 2008;6(3):211-21. [Crossref] [PubMed]
  • 20. Smith G. Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153-76. [Crossref] [PubMed] [PMC]
  • 21. Kim HC, Lee HK. Vaccines against genital herpes: where are we? Vac- cines (Basel). 2020;8(3):420. [Crossref] [PubMed] [PMC]
  • 22. Amin I, Younas S, Afzal S, Shahid M, Idrees M. Herpes simplex virus type 1 and host antiviral immune responses: an update. Viral Immunol. 2019;32(10):424-9. [Crossref] [PubMed]
  • 23. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKepsilon and TBK1 are essential components of the IRF3 sig- naling pathway. Nat Immunol. 2003;4(5):491-6. [Crossref] [PubMed]
  • 24. Melchjorsen J, Matikainen S, Paludan SR. Activation and evasion of in- nate antiviral immunity by herpes simplex virus. Viruses. 2009;1(3):737- 59. [Crossref] [PubMed] [PMC]
  • 25. Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461-88. [Crossref] [PubMed]
  • 26. Hook LM, Awasthi S, Dubin J, Flechtner J, Long D, Friedman HM. A triva- lent gC2/gD2/gE2 vaccine for herpes simplex virus generates antibody responses that block immune evasion domains on gC2 better than nat- ural infection. Vaccine. 2019;37(4):664-9. [Crossref] [PubMed] [PMC]
  • 27. Koujah L, Suryawanshi RK, Shukla D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell Mol Life Sci. 2019;76(3):405-19. [Crossref] [PubMed] [PMC]
  • 28. Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex ker- atitis: the host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf. 2019;17(1):40-9. [Crossref] [PubMed] [PMC]
  • 29. Looker KJ, Elmes JAR, Gottlieb SL, Schiffer JT, Vickerman P, Turner KME, et al Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. Lancet Infect Dis. 2017;17(12):1303-16. [Crossref] [PubMed] [PMC]
  • 30. Agelidis AM, Shukla D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 2015;10(10):1145-54. [Crossref] [PubMed] [PMC]
  • 31. Bruno E, Pillus D, Cheng D, Vilke G, Pokrajac N. During the emergency department evaluation of a well-appearing neonate with fever, should empiric acyclovir be initiated? J Emerg Med. 2018;54(2):261-5. [Cross- ref] [PubMed]
  • 32. Green J. Psychosocial issues in genital herpes management. Herpes. 2004;11(3):60-2. [PubMed]
  • 33. Lövheim H, Gilthorpe J, Johansson A, Eriksson S, Hallmans G, Elgh F. Herpes simplex infection and the risk of Alzheimer's disease: a nested case-control study. Alzheimers Dement. 2015;11(6):587-92. [Crossref] [PubMed]
  • 34. Li Puma DD, Piacentini R, Leone L, Gironi K, Marcocci ME, De Chiara G, et al. Herpes Simplex virus type-1 infection ımpairs adult hippocam- pal neurogenesis via amyloid- β protein accumulation. Stem Cells. 2019;37(11):1467-80. [Crossref] [PubMed]
  • 35. Linard M, Letenneur L, Garrigue I, Doize A, Dartigues JF, Helmer C. In- teraction between APOE4 and herpes simplex virus type 1 in Alzheimer's disease. Alzheimers Dement. 2020;16(1):200-8. [Crossref] [PubMed]
  • 36. Johnston C, Morrow RA, Stanberry LR. Human herpesviruses: herpes simplex viruses types 1 and 2. In: Kaslow RA, Stanberry LR, LeDuc JW, eds. Viral Infections of Humans: Epidemiology and Control. 5th ed. New York, NY: Springer; 2014. p.829-54. [Crossref]
  • 37. Looker KJ, Garnett GP. A systematic review of the epidemiology and in- teraction of herpes simplex virus types 1 and 2. Sex Transm Infect. 2005;81(2):103-7. [Crossref] [PubMed] [PMC]
  • 38. Smith JS, Robinson NJ. Age-specific prevalence of infection with her- pes simplex virus types 2 and 1: a global review. J Infect Dis. 2002;186 Suppl 1:S3-28. [Crossref] [PubMed]
  • 39. Ike AC, Onu CJ, Ononugbo CM, Reward EE, Muo SO. Immune response to herpes simplex virus infection and vaccine development. Vaccines (Basel). 2020;8(2):302. [Crossref] [PubMed] [PMC]
  • 40. Rafferty E, McDonald W, Qian W, Osgood ND, Doroshenko A. Evalua- tion of the effect of chickenpox vaccination on shingles epidemiology using agent-based modeling. PeerJ. 2018;6:e5012.[Crossref] [PubMed] [PMC]
  • 41. Bernstein DI, Flechtner JB, McNeil LK, Heineman T, Oliphant T, Tasker S, et al; Genocea study group. Therapeutic HSV-2 vaccine decreases re- current virus shedding and recurrent genital herpes disease. Vaccine. 2019;37(26):3443-50. [Crossref] [PubMed]
  • 42. Awasthi S, Hook LM, Shaw CE, Friedman HM. A trivalent subunit anti- gen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model. Hum Vaccin Immunother. 2017;13(12):2785-93. [Crossref] [PubMed] [PMC]
  • 43. Khodai T, Chappell D, Christy C, Cockle P, Eyles J, Hammond D, et al. Single and combination herpes simplex virus type 2 glycoprotein vac- cines adjuvanted with CpG oligodeoxynucleotides or monophosphoryl lipid A exhibit differential immunity that is not correlated to protection in animal models. Clin Vaccine Immunol. 2011;18(10):1702-9. [Crossref] [PubMed] [PMC]
  • 44. Mundle ST, Hernandez H, Hamberger J, Catalan J, Zhou C, Stegalkina S, et al. High-purity preparation of HSV-2 vaccine candidate ACAM529 is immunogenic and efficacious in vivo. PLoS One. 2013;8(2):e57224. [Crossref] [PubMed] [PMC]
  • 45. Srivastava R, Roy S, Coulon PG, Vahed H, Prakash S, Dhanushkodi N, et al. Therapeutic mucosal vaccination of herpes simplex virus 2-infected guinea pigs with ribonucleotide reductase 2 (RR2) protein boosts antivi- ral neutralizing antibodies and local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. J Virol. 2019;93(9):e02309-18. [Crossref] [PubMed] [PMC]
  • 46. Whitley R, Baines J. Clinical management of herpes simplex virus in- fections: past, present, and future. F1000Res. 2018;7:F1000 Faculty Rev-1726. [Crossref] [PubMed] [PMC]
  • 47. Johnston C, Gottlieb SL, Wald A. Status of vaccine research and devel- opment of vaccines for herpes simplex virus. Vaccine. 2016;34(26):2948- 52. [Crossref] [PubMed]
  • 48. Corey L, Langenberg AG, Ashley R, Sekulovich RE, Izu AE, Douglas JM Jr, et al. Recombinant glycoprotein vaccine for the pre- vention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA. 1999;282(4):331-40.[Cross- ref] [PubMed]
  • 49. Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS, Saied AA, et al. A single intramuscular vaccination of mice with the HSV- 1 VC2 virus with mutations in the glycoprotein K and the membrane pro- tein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One. 2014;9(10):e109890. [Crossref] [PubMed] [PMC]
  • 50. Awasthi S, Hook LM, Shaw CE, Pahar B, Stagray JA, Liu D, et al. An HSV-2 trivalent vaccine is immunogenic in rhesus macaques and highly efficacious in guinea pigs. PLoS Pathog. 2017;13(1):e1006141.[Cross- ref] [PubMed] [PMC]
  • 51. Egan KP, Hook LM, Naughton A, Pardi N, Awasthi S, Cohen GH, et al. An HSV-2 nucleoside-modified mRNA genital herpes vaccine contain- ing glycoproteins gC, gD, and gE protects mice against HSV-1 genital le- sions and latent infection. PLoS Pathog. 2020;16(7):e1008795. [Cross- ref] [PubMed] [PMC]
  • 52. Cairns TM, Huang ZY, Whitbeck JC, Ponce de Leon M, Lou H, Wald A, et al. Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol. 2014;88(21):12612- 22. [Crossref] [PubMed] [PMC]
  • 53. LeRoux-Roels G, Moreau E, Desombere I. Persistence of humoral and cellular immune response and booster effect following vaccination with herpes simplex 9gD2t) candidate vaccine with MPL. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy; Orlando USA; 4-7 October; 1994.
  • 54. Belshe RB, Leone PA, Bernstein DI, Wald A, Levin MJ, Stapleton JT, et al; Herpevac trial for women. Efficacy results of a trial of a herpes sim- plex vaccine. N Engl J Med. 2012;366(1):34-43. [Crossref] [PubMed] [PMC]
  • 55. Plotkin SA, Gilbert PB. Nomenclature for immune correlates of protec- tion after vaccination. Clin Infect Dis. 2012;54(11):1615-7. [Crossref] [PubMed] [PMC]
  • 56. Stanberry LR, Cunningham AL, Mindel A, Scott LL, Spruance SL, Aoki FY, et al. Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis. 2000;30(3):549-66. [Crossref] [PubMed]
  • 57. Awasthi S, Huang J, Shaw C, Friedman HM. Blocking herpes simplex virus 2 glycoprotein E immune evasion as an approach to enhance effi- cacy of a trivalent subunit antigen vaccine for genital herpes. J Virol. 2014;88(15):8421-32. [Crossref] [PubMed] [PMC]
  • 58. Petro C, González PA, Cheshenko N, Jandl T, Khajoueinejad N, Bénard A, et al. Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease. Elife. 2015;4:e06054. [Cross- ref] [PubMed] [PMC]
  • 59. Aurelian L. Herpes simplex virus type 2 vaccines: new ground for opti- mism? Clin Diagn Lab Immunol. 2004;11(3):437-45. [Crossref] [PubMed] [PMC]
  • 60. Iyer AV, Pahar B, Chouljenko VN, Walker JD, Stanfield B, Kousoulas KG. Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol J. 2013;10:317. [Crossref] [PubMed] [PMC]
  • 61. Stanfield BA, Rider PJF, Caskey J, Del Piero F, Kousoulas KG. Intra- muscular vaccination of guinea pigs with the live-attenuated human her- pes simplex vaccine VC2 stimulates a transcriptional profile of vaginal Th17 and regulatory Tr1 responses. Vaccine. 2018;36(20):2842-9. [Crossref] [PubMed]
  • 62. Kim HC, Oh DS, Park JH, Kim HJ, Seo YB, Yoo HJ, et al. Multivalent DNA vaccine protects against genital herpes by T-cell immune induc- tion in vaginal mucosa. Antiviral Res. 2020;177:104755. [Crossref] [PubMed]
  • 63. Zhou Y, Wang Z, Xu Y, Zhang Z, Hua R, Liu W, et al. Optimized DNA vaccine enhanced by adjuvant IL28B induces protective immune re- sponses against herpes simplex virus type 2 in mice. Viral Immunol. 2017;30(8):601-14. [Crossref] [PubMed]
  • 64. Ogasawara M, Suzutani T, Yoshida I, Azuma M. Role of the UL25 gene product in packaging DNA into the herpes simplex virus capsid: location of UL25 product in the capsid and demonstration that it binds DNA. J Virol. 2001;75(3):1427-36. [Crossref] [PubMed] [PMC]
  • 65. Liu W, Zhou Y, Wang Z, Zhang Z, Wang Q, Su W, et al. Evaluation of re- combinant adenovirus vaccines based on glycoprotein D and truncated UL25 against herpes simplex virus type 2 in mice. Microbiol Immunol. 2017;61(5):176-84. [Crossref] [PubMed]
  • 66. Cunningham AL, Mikloska Z. The Holy Grail: immune control of human herpes simplex virus infection and disease. Herpes. 2001;8 Suppl 1:6A- 10A. [PubMed]
  • 67. Blank H, Haines HG. Experimental human reinfection with herpes sim- plex virus. J Invest Dermatol. 1973;61(4):223-5. [Crossref] [PubMed]
  • 68. Koelle DM, Corey L. Recent progress in herpes simplex virus immuno- biology and vaccine research. Clin Microbiol Rev. 2003;16(1):96-113. [Crossref] [PubMed] [PMC]
  • 69. Shin H, Iwasaki A. A vaccine strategy that protects against genital her- pes by establishing local memory T cells. Nature. 2012;491(7424):463- 7. [Crossref] [PubMed] [PMC]
  • 70. Morello CS, Levinson MS, Kraynyak KA, Spector DH. Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease. J Virol. 2011;85(7):3461-72. [Crossref] [PubMed] [PMC]
  • 71. Allen SJ, Hamrah P, Gate D, Mott KR, Mantopoulos D, Zheng L, et al. The role of LAT in increased CD8+ T cell exhaustion in trigeminal gan- glia of mice latently infected with herpes simplex virus 1. J Virol. 2011;85(9):4184-97. [Crossref] [PubMed] [PMC]
APA ÇAKIR D, Baydar T, ERKEKOGLU P (2022). Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. , 201 - 212. 10.5336/pharmsci.2022-89865
Chicago ÇAKIR Deniz Arca,Baydar Terken,ERKEKOGLU PİNAR Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. (2022): 201 - 212. 10.5336/pharmsci.2022-89865
MLA ÇAKIR Deniz Arca,Baydar Terken,ERKEKOGLU PİNAR Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. , 2022, ss.201 - 212. 10.5336/pharmsci.2022-89865
AMA ÇAKIR D,Baydar T,ERKEKOGLU P Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. . 2022; 201 - 212. 10.5336/pharmsci.2022-89865
Vancouver ÇAKIR D,Baydar T,ERKEKOGLU P Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. . 2022; 201 - 212. 10.5336/pharmsci.2022-89865
IEEE ÇAKIR D,Baydar T,ERKEKOGLU P "Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme." , ss.201 - 212, 2022. 10.5336/pharmsci.2022-89865
ISNAD ÇAKIR, Deniz Arca vd. "Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme". (2022), 201-212. https://doi.org/10.5336/pharmsci.2022-89865
APA ÇAKIR D, Baydar T, ERKEKOGLU P (2022). Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. Literatür Eczacılık Bilimleri Dergisi, 11(3), 201 - 212. 10.5336/pharmsci.2022-89865
Chicago ÇAKIR Deniz Arca,Baydar Terken,ERKEKOGLU PİNAR Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. Literatür Eczacılık Bilimleri Dergisi 11, no.3 (2022): 201 - 212. 10.5336/pharmsci.2022-89865
MLA ÇAKIR Deniz Arca,Baydar Terken,ERKEKOGLU PİNAR Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. Literatür Eczacılık Bilimleri Dergisi, vol.11, no.3, 2022, ss.201 - 212. 10.5336/pharmsci.2022-89865
AMA ÇAKIR D,Baydar T,ERKEKOGLU P Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. Literatür Eczacılık Bilimleri Dergisi. 2022; 11(3): 201 - 212. 10.5336/pharmsci.2022-89865
Vancouver ÇAKIR D,Baydar T,ERKEKOGLU P Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme. Literatür Eczacılık Bilimleri Dergisi. 2022; 11(3): 201 - 212. 10.5336/pharmsci.2022-89865
IEEE ÇAKIR D,Baydar T,ERKEKOGLU P "Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme." Literatür Eczacılık Bilimleri Dergisi, 11, ss.201 - 212, 2022. 10.5336/pharmsci.2022-89865
ISNAD ÇAKIR, Deniz Arca vd. "Herpes Simpleks Virüsleri ve Aşı Çalışmaları: Geleneksel Derleme". Literatür Eczacılık Bilimleri Dergisi 11/3 (2022), 201-212. https://doi.org/10.5336/pharmsci.2022-89865