Yıl: 2022 Cilt: 47 Sayı: 6 Sayfa Aralığı: 811 - 818 Metin Dili: İngilizce DOI: 10.1515/tjb-2022-0025 İndeks Tarihi: 22-05-2023

Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio)

Öz:
Objectives: Acrylamide, a widely used chemical in industry, clinical laboratory and waste treatment plants, is considered a carcinogen in humans. The present study examined the hormonal, hematologic, and genotoxic responses in the invertebrate model common carp Cyprinus carpio after exposure to sublethal acrylamide. Methods: Fish were exposed to acrylamide at 10 and 50 mg/L for 96 h, along with the respective control group. Serum levels of cortisol and thyroid hormones were measured using diagnostic ELISA direct immunoenzymatic kits. For micronucleus (MN) frequency assay, thin smears of the peripheral blood of fish were prepared. Results: Serum levels of cortisol in both treatment groups considerably increased, which proposed that acrylamide caused a stress reaction of acrylamide exposed fish (p<0.05). Fish demonstrated significant decreases in triiodothyronine (T3), free thyroxine (FT4), and free triiodothyronine (FT3) concentrations in a dose-dependent manner after acrylamide exposure (p<0.05). However, serum thyroxine (T4) concentrations did not alter significantly in the treatment groups. Mean MN frequencies of fish erythrocytes increased significantly in acrylamide exposed groups suggesting that acrylamide is genotoxic in common carp (p<0.05). The hematocrit, hemoglobin, and erythrocyte numbers of carp increased significantly in exposure groups (p<0.05). Conclusions: These results suggested that acrylamide can significantly affect the hemopoietic system. Furthermore, this study confirmed that the widespread use of acrylamide, even in sublethal concentrations, could affect the survival of non-target organisms, especially fish, in aquatic environments.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Parzefall W. Minireview on the toxicity of dietary acrylamide. Food Chem Toxicol 2008;46:1360–4.
  • 2. Tepe Y, Çebi A. Acrylamide in environmental water: a review on sources, exposure, and public health risks. Expo Health 2019;11: 3–12.
  • 3. Stadler RH, Blank I, Varga N, Robert F, Hav J, Guy PA, et al. Acrylamide from Malliard reaction products. Nature 2002;419:449–50.
  • 4. Larguinho M, Costa PM, Sousa G, Costa MH, Diniz MS, Baptista PV, et al. Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations. J Appl Toxicol 2013;34:1293–302.
  • 5. Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, et al. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 2014;69:1–12.
  • 6. Spencer H, Wahome J, Haasch M. Toxicity evaluation of acrylamide on the early life stages of the zebrafish embryos (Danio rerio). J Environ Protect 2018;9:1082–91.
  • 7. U.S. EPA. Health and environmental effects profile for acrylamide (Final Report. Washington, D.C: U.S. Environmental Protection AgencyNTIS PB88170824); 1985, 19851985.EPA/600/X-85/270.
  • 8. AQUIRE, EPA. ERL-Duluth’s aquatic ecotoxicology data systems. Duluth, MN: U.S. EPA; 1994.
  • 9. Krautter GR, Mast RW, Alexander HC, Wolf CH, Friedman MA, Koschier FJ, et al. Acute aquatic toxicity tests with acrylamide monomer and macroinvertebrates and fish. Environ Toxicol Chem 1986;5:373–7.
  • 10. Kılçle PA, Koc E, Dogan A, Gul S, Dogan ANC, Ersan Y. Investigation of the effect of acrylamide on Capoeta capoeta (Guldensttead 1773) by histopathological, electrophoretic and biochemical methods. Caucasian J Sci 2020;7:153–66.
  • 11. Tan D, Li L, Wang S, Wei B, Zhang X, Sun B, et al. The cytogenetic effects of acrylamide on Carassius auratus periperial blood cells. Food Chem Toxicol 2013;62:318–22.
  • 12. Faria M, Ziv T, Gómez-Canela C, Ben-Lulu S, Prats E, Novoa- Luna KA, et al. Acrylamide acute neurotoxicity in adult zebrafish. Sci Rep 2018;8:7918.
  • 13. Ibrahim MA, Ibrahem MD. Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). Environ Toxicol 2020;35: 300–8.
  • 14. Gopika CM, Sumi N, Chitra KC. Involvement of reactive oxygen species in the toxicity of acrylamide in muscle tissue of the fish, Oreochromis niloticus (Linnaeus, 1758). World J Pharm Res 2018; 7:1617–28.
  • 15. Shi X, Liu C, Wu G, Zhou B. Waterborne exposure to PFOS causes disruption of the hypothalamus–pituitary–thyroid axis in zebrafish larvae. Chemosphere 2009;77:1010–8.
  • 16. Bianco AC, Larsen PR. Cellular and structural biology of the deiodinases. Thyroid 2005;15:777–86.
  • 17. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998;8:827–56.
  • 18. Guo Y, Zhou B. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay. Aquat Toxicol 2013;142-143:138–45.
  • 19. Tu W, Xu C, Lu B, Lin C, Wu Y, Liu W, et al. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus–pituitary–thyroid axis in zebrafish embryos. Sci Total Environ 2016;542:876–85.
  • 20. Carr JA, Patino R. The hypothalamus-pituitary-thyroid axis in teleosts and amphibians: endocrine disruption and its consequences to natural populations. Gen Comp Endocrinol 2011;170:299–312.
  • 21. Bolasina SN, Tagawa M, Yamashita Y. Changes on cortisol level and digestive enzyme activity in juveniles of Japanese flounder, Paralichthys olivaceus, exposed to different salinity regimes. Aquaculture 2007;266:255–61.
  • 22. Kühn ER, Geris KL, Van der Geyten S, Mol KA, Darras VM. Inhibition and activation of the thyroidal axis by the adrenal axis in vertebrates. Comp Biochem Physiol 1998;120A: 169–74.
  • 23. OECD. OECD test no Mammalian erythrocyte micronucleus test, OECD guideline for the testing of chemicals, section, section 4, Paris: OECD Publishing; 2016.
  • 24. García-García CR, Parrón T, Requena M, Alarcón R, Tsatsakis AM, Hernández AF. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci 2016;145:274–83.
  • 25. APHA. Standard methods for the examination of water and waste water. American Public Health Association; 1998: 874.p.
  • 26. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, et al. Report from the in vitro micronucleus assay working group. Environ Mol Mutagen 2000;35:167–72.
  • 27. Benli ACK, Erkmen B, Erkoc F. Genotoxicity of sub-lethal di-nbutyl phthalate (DBP) in Nile tilapia (Oreochromis niloticus). Arh Hig Rada Toksikol 2016;67:25–30.
  • 28. Hontela A. Adrenal toxicology: environmental pollutants and the HPI axis. In: Mommsen TP, Moon TW., editors, Biochemistry and molecular biology fishes 2005;6:331–63
  • 29. Zhou T, John-Alder HB,Weis JS, Weis P. Endocrine disruption: thyroid dysfunction in mummichogs (Fundulus heteroclitus) from a polluted site. Mar Environ Res 2000;50:393–7.
  • 30. Hontela A, Daniel C, Rasmussen JB. Structural and functional impairment of the hypothalamo–pituitary–interrenal axis in fish exposed to bleached Kraft mill effluent in the St Maurice River, Quebec. Ecotoxicology 1997;6:1–12.
  • 31. Garcia-Santos S, Fontainhas-Fernandes A, Monteiro SM, Wilson JM. Effects of exposure to cadmium on some endocrine parameters in Tilapia, Oreochromis niloticus. Bull Environ Contam Toxicol 2013;90:55–9.
  • 32. Li D, Xie P, Zhang X. Changes in plasma thyroid hormones and cortisol levels in crucian carp (Carassius auratus) exposed to the extracted microcystins. Chemosphere 2008;74: 13–8.
  • 33. Hoseini SM, Mirghaed AT, Mazandarani M, Zohaeri F. Serum cortisol, glucose, thyroid hormones’ and non-specific immune responses of Persian sturgeon, Acipenser persicus to exogenous tryptophan and acute stress. Aquaculture 2016; 462:17–23.
  • 34. Bowyer JF, Latendresse JR, Delongchamp RR, Muskhelihvili L, Warbritton AR, Thomas M, et al. The effects of subchronic acrylamide exposure on gene expression, neurochemistry, hormones, and histopathology in the hypothalamus–pituitary– thyroid axis of male Fischer 344 rats. Toxicol Appl Pharmacol 2008;230:208–15.
  • 35. Eales JG, Shostak S. Free T4 and T3, in relation to total hormone, free hormone indices, and protein in plasma of rainbow trout and arctic charr. Gen Comp Endocrinol 1985;58: 291–302.
  • 36. Tlili S, Jebali J, Banni M, Haouas Z, Mlayah A, Helal AN, et al. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites. Environ Monit Assess 2010; 168:285–98.
  • 37. Lineback DR, Coughlin JR, Stadler RH. Acrylamide in foods a review of the science and future considerations. Annu Rev Food Sci Technol 2012;3:15–35.
  • 38. Watzek N, Böhm N, Feld J, Scherbl D, Berger F, Merz KH, et al. N7-glycidamide-guanine DNA adduct formation by orally ingested acrylamide in rats a dose–response study encompassing human diet-related exposure levels. Chem Res Toxicol 2012;25:381–90.
  • 39. Henrike S, Björn B, Alexander R. Blood will tell: what hematological analyses can reveal about fish welfare. Front Vet Sci 2021;8:194.
  • 40. Sepici-Dincel A, Benli ACK, Selvi M, Sarikaya R, Sahin D, Ayhan Ozkul I, et al. Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotoxicol Environ Saf 2009;72: 1433–1.
APA ERKMEN B, GÜNAL A, Polat H, Erdoğan K, Civelek h (2022). Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). , 811 - 818. 10.1515/tjb-2022-0025
Chicago ERKMEN Belda,GÜNAL AYSEL ÇAGLAN,Polat Hüseyin,Erdoğan Kenan,Civelek hilal Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). (2022): 811 - 818. 10.1515/tjb-2022-0025
MLA ERKMEN Belda,GÜNAL AYSEL ÇAGLAN,Polat Hüseyin,Erdoğan Kenan,Civelek hilal Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). , 2022, ss.811 - 818. 10.1515/tjb-2022-0025
AMA ERKMEN B,GÜNAL A,Polat H,Erdoğan K,Civelek h Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). . 2022; 811 - 818. 10.1515/tjb-2022-0025
Vancouver ERKMEN B,GÜNAL A,Polat H,Erdoğan K,Civelek h Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). . 2022; 811 - 818. 10.1515/tjb-2022-0025
IEEE ERKMEN B,GÜNAL A,Polat H,Erdoğan K,Civelek h "Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio)." , ss.811 - 818, 2022. 10.1515/tjb-2022-0025
ISNAD ERKMEN, Belda vd. "Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio)". (2022), 811-818. https://doi.org/10.1515/tjb-2022-0025
APA ERKMEN B, GÜNAL A, Polat H, Erdoğan K, Civelek h (2022). Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). Türk Biyokimya Dergisi, 47(6), 811 - 818. 10.1515/tjb-2022-0025
Chicago ERKMEN Belda,GÜNAL AYSEL ÇAGLAN,Polat Hüseyin,Erdoğan Kenan,Civelek hilal Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). Türk Biyokimya Dergisi 47, no.6 (2022): 811 - 818. 10.1515/tjb-2022-0025
MLA ERKMEN Belda,GÜNAL AYSEL ÇAGLAN,Polat Hüseyin,Erdoğan Kenan,Civelek hilal Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). Türk Biyokimya Dergisi, vol.47, no.6, 2022, ss.811 - 818. 10.1515/tjb-2022-0025
AMA ERKMEN B,GÜNAL A,Polat H,Erdoğan K,Civelek h Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). Türk Biyokimya Dergisi. 2022; 47(6): 811 - 818. 10.1515/tjb-2022-0025
Vancouver ERKMEN B,GÜNAL A,Polat H,Erdoğan K,Civelek h Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio). Türk Biyokimya Dergisi. 2022; 47(6): 811 - 818. 10.1515/tjb-2022-0025
IEEE ERKMEN B,GÜNAL A,Polat H,Erdoğan K,Civelek h "Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio)." Türk Biyokimya Dergisi, 47, ss.811 - 818, 2022. 10.1515/tjb-2022-0025
ISNAD ERKMEN, Belda vd. "Sublethal effects of acrylamide on thyroid hormones, complete blood count and micronucleus frequency of vertebrate model organism (Cyprinus carpio)". Türk Biyokimya Dergisi 47/6 (2022), 811-818. https://doi.org/10.1515/tjb-2022-0025