Yıl: 2022 Cilt: 10 Sayı: 5 Sayfa Aralığı: 655 - 665 Metin Dili: İngilizce DOI: 10.14235/bas.galenos.2021.6492 İndeks Tarihi: 22-05-2023

Tobacco: Its Conventional and Modern Dosage Forms in Medication

Öz:
Tobacco is one of the most planted products in worldwide and the whole Nicotiana tabacum L. plant, its leaves, flowers, seeds or roots, and individual chemical compounds have medicinal uses such as as sedative, diuretic, or expectorant. From the past to the present, tobacco has been used in various dosage forms including oral/ transdermal films, sublingual tablets, mouth/nasal spray, and inhaler. In addition, Tobacco is a very valuable plant with uses in medicine and bioengineering applications. In this review, it was aimed to give information about the tobacco plant and its medicinal uses and also the pharmaceutical dosage forms as well as novel delivery systems of nicotine compound of tobacco via comprehensively search method of the literature by using Pubmed, ScienceDirect, ISI Web of Knowledge, and Google Scholar databases for articles published in peer-reviewed journals from mostly 2016 to 2021. It is also aimed to draw attention to the pharmaceutical use of tobacco plant instead of potential harmful uses. In conclusion, there is need to be carried out new studies to enlighten the exact mechanisms of tobacco and its major compound of nicotine on other diseases such as schizophrenia, Parkinson’s disease, and prose memory and attention than smoking cessation therapy and evaluate its safety and develop more effective novel pharmaceutical dosage forms.
Anahtar Kelime:

Tütün: Konvansiyonel ve Modern İlaç Dozaj Şekilleri

Öz:
Tütün, dünya çapında en çok ekilen ürünlerden biridir ve tüm Nicotiana tabacum L. bitkisi, yaprakları, çiçekleri, tohumları veya kökleri ve tek tek kimyasal bileşikleri, yatıştırıcı, idrar söktürücü veya balgam söktürücü gibi tıbbi kullanımlara sahiptir. Geçmişten günümüze tütün, oral/transdermal filmler, dil altı tabletleri, ağız/ burun spreyi ve inhaler dahil olmak üzere çeşitli dozaj formlarında kullanılmıştır. Ayrıca tütün, tıp ve biyomühendislik uygulamalarında kullanımları olan çok değerli bir bitkidir. Bu derlemede, Pubmed, ScienceDirect, ISI Web of Knowledge ve Google Scholar veri tabanlarında çoğunlukla 2016-2021 yılları arasındaki hakemli dergilerde yayınlanan makaleler kullanılarak kapsamlı literatür taraması yöntemi ile tütün bitkisi ve tıbbi kullanımları ve ayrıca farmasötik dozaj formları ve tütünün nikotin bileşiğinin yeni salım sistemleri hakkında bilgi verilmesi amaçlanmıştır. Ayrıca tütün bitkisinin potansiyel zararlı kullanımları yerine farmasötik kullanımına dikkat çekilmesi amaçlanmıştır. Sonuç olarak, tütünün ve ana bileşeni olan nikotinin sigara bırakma tedavisinden başka şizofreni, Parkinson hastalığı, Alzheimer hastalığı ve dikkat bozukluğu gibi diğer hastalıklardaki etki mekanizmalarınının aydınlatılmasına, güvenliğinin değerlendirilmesine ve daha etkili yenilikçi farmasötik dozaj şekillerinin geliştirilmesine ihtiyaç vardır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Sanchez-ramos JR. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information. 2020
  • 2. Rawat A, Mali RR. Phytochemical Properties and Pharmcological Activities of Nicotiana Tabacum. Indian J Pharm Biol Res 2013;1:74- 82.
  • 3. Binorkar S, Jani D. Traditional Medicinal Usage of Tobacco and #8211; A Review. Spat DD - Peer Rev J Complement Med Drug Discov 2012;2:127.
  • 4. Banožić M, Babić J, Jokić S. Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Ind Crops Prod 2020;144:112009.
  • 5. Shen J, Shao X. Determination of tobacco alkaloids by gas chromatography-mass spectrometry using cloud point extraction as a preconcentration step. Anal Chim Acta 2006;561:83-7.
  • 6. Wang H, Zhao M, Yang B, Jiang Y, Rao G. Identification of polyphenols in tobacco leaf and their antioxidant and antimicrobial activities. Food Chem 2008;107:1399-406.
  • 7. Popova V, Gochev V, Girova T, Iliev I, Ivanova T, Stoyanova A. Extraction Products from Tobacco – Aroma and Bioactive Compounds and Activities. Curr Bioact Compd 2015;11:31-7.
  • 8. Popova V, Ivanova T, Stoyanova A, Nikolova V, Hristeva T, Docheva M, et al. Polyphenols and triterpenes in leaves and extracts from three Nicotiana species. J Appl Biol Biotechnol 2019;7:45-9.
  • 9. Gozan M, Yasman Y, Wulan PPDK, Dawitri E. Tobacco leaves pyrolysis for repellent active compound production. Int J Appl Eng Res. 2014;9:9739-50.
  • 10. Liu Y, Yong G, Xu Y, Zhu D, Tong H, Liu S. Simultaneous determination of free and esterified fatty alcohols, phytosterols and solanesol in tobacco leaves by GC. Chromatographia 2010;71:727- 32.
  • 11. Häkkinen ST, Tilleman S, Swiatek A, De Sutter V, Rischer H, Vanhoutte I I, et al. Functional characterisation of genes involved in pyridine alkaloid biosynthesis in tobacco. Phytochemistry 2007;68:2773-85.
  • 12. Salvi S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin Chest Med 2014;35:17-27. 13. Mabit J, Giove R. Sinchi , Sinchi , Negrito : Medicinal Use of Tobacco in the Upper Peruvian Amazon. 2012.
  • 14. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
  • 15. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
  • 16. Charlton A. Medicinal uses of tobacco in history. J R Soc Med 2004;97:292-6.
  • 17. Kishore K. Monograph of Tobacco (Nicotiana Tabacum). Indian J Drugs 2014;2:5-23.
  • 18. Nouri F, Nourollahi-Fard SR, Foroodi HR, Sharifi H. In vitro anthelmintic effect of Tobacco (Nicotiana tabacum) extract on parasitic nematode, Marshallagia marshalli. J Parasit Dis 2016;40:643-7.
  • 19. Mehta M, Adem A, Kahlon MS, Sabbagh MN. The nicotinic acetylcholine receptor: smoking and Alzheimer’s disease revisited. Front Biosci (Elite Ed) 2012;4:169-80.
  • 20. Shen J, Wu J. Nicotinic cholinergic mechanisms in Alzheimer’s disease. Int Rev Neurobiol 2015;124:275-92.
  • 21. Kelton MC, Kahn HJ, Conrath CL, Newhouse PA. The effects of nicotine on Parkinson’s disease. Brain Cogn 2000;43:274-82.
  • 22. Barreto GE, Iarkov A, Moran VE. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease. Front Aging Neurosci 2015;6:340.
  • 23. Nicholatos JW, Francisco AB, Bender CA, Yeh T, Lugay FJ, Salazar JE, et al. Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6. Acta Neuropathol Commun 2018;6:120.
  • 24. Gupta AK, Nethan ST, Mehrotra R. Tobacco use as a well- recognized cause of severe COVID-19 manifestations. Respir Med 2021;176:106233.
  • 25. Kodama H, Fujimori T, Tanaka H, Kato K. Antibacterial activity of sesquiterpenoid stress compounds and their glycosides from tobacco. Agric Biol Chem 1985;49:1527-8.
  • 26. Zaidi SA. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Biosens Bioelectron 2017;94:714-8.
  • 27. Prasad KS, Pathak D, Patel A, Dalwadi P, Prasad R, Patel P, et al. Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. African J Biotechnol 2011;10:8122-30.
  • 28. Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van den Elzen PJ, Melchers LS, Cornelissen BJ. A novel pathogen- and wound- inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 1994;104:109-18.
  • 29. Adeleye IA, Onubogu CC, Ayolabi CI, Isawumi AO, Nshiogu ME, Lagos A. Research Paper AGAINST MYCOBACTERIUM TUBERCULOSIS ISOLATED FROM TUBERCULOSIS. 2008;2:85-93.
  • 30. Ru QM, Wang LJ, Li WM, Wang JL, Ding YT. In Vitro antioxidant properties of flavonoids and polysaccharides extract from tobacco (Nicotiana tabacum L.) leaves. Molecules 2012;17:11281-91.
  • 31. Nasr SB, Aazza S, Mnif W, Miguel M. Phenol content and antioxidant activity of different young and adult plant parts of tobacco from Tunisia, dried at 40 and 70 °C. J Appl Pharm Sci 2014;4:23-31.
  • 32. Sharma Y, Srivastava N, Dua D. ANTIBACTERIAL ACTIVITY, PHYTOCHEMICAL SCREENING AND ANTIOXIDANT ACTIVITY OF STEM OF NICOTIANA TABACUM INTRODUCTION : Natural bioactive compounds have shown various anti-bacterial , anti-fungal , and described in Ayurveda and other alternative The medicin. 2016;7(March).
  • 33. Iqbal Z, Lateef M, Akhtar MS, Ghayur MN, Gilani AH. In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. J Ethnopharmacol 2006;106:285-7.
  • 34. Rodriguez-Fontan F, Reeves B, Tuaño K, Colakoglu S, D’ Agostino L, Banegas R. Tobacco use and neurogenesis: A theoretical review of pathophysiological mechanism affecting the outcome of peripheral nerve regeneration. J Orthop 2020;22:59-63.
  • 35. Morimoto N, Takemoto S, Kawazoe T, Suzuki S. Nicotine at a Low Concentration Promotes Wound Healing. J Surg Res 2008;145:199- 204.
  • 36. Scerri C. Nicotine : Pharmacology and Therapeutic Implications in Neurodegenerative and Psychiatric Disorders. Malta Medical Journal 2005;17:18-21.
  • 37. Tremblay R, Wang D, Jevnikar AM, Ma S. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 2010;28:214-21.
  • 38. Dey A. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products. Pharmacol Res 2021;164:105359.
  • 39. Berlowitz I, Torres EG, Walt H, Wolf U, Maake C, Martin-Soelch C. “Tobacco Is the Chief Medicinal Plant in My Work”: Therapeutic Uses of Tobacco in Peruvian Amazonian Medicine Exemplified by the Work of a Maestro Tabaquero. Front Pharmacol 2020;11:594591.
  • 40. Kozlowski LT, Giovino GA, Edwards B, Difranza J, Foulds J, Hurt R, et al. Advice on using over-the-counter nicotine replacement therapy-patch, gum, or lozenge-to quit smoking. Addict Behav 2007;32:2140-50.
  • 41. Shiffman S, Fant RV, Buchhalter AR, Gitchell JG, Henningfield JE. Nicotine delivery systems. Expert Opin Drug Deliv 2005;2:563-77.
  • 42. Tanus-Santos JE, Toledo JC, Cittadino M, Sabha M, Rocha JC, Moreno H. Cardiovascular effects of transdermal nicotine in mildly hypertensive smokers. Am J Hypertens 2001;14:610-4.
  • 43. AhnAllen CG, Nestor PG, Shenton ME, McCarley RW, Niznikiewicz MA. Early nicotine withdrawal and transdermal nicotine effects on neurocognitive performance in schizophrenia. Schizophr Res 2008;100:261-9.
  • 44. Poltavski DV, Petros T. Effects of transdermal nicotine on prose memory and attention in smokers and nonsmokers. Physiol Behav 2005;83:833-43.
  • 45. Zhao Z, Hu Y, Hoerle R, Devine M, Raleigh M, Pentel P, et al. A nanoparticle-based nicotine vaccine and the influence of particle size on its immunogenicity and efficacy. Nanomedicine 2017;13:443-54.
  • 46. Dongargaonkar AA, Bowlin GL, Yang H. Electrospun blends of gelatin and gelatin-dendrimer conjugates as a wound-dressing and drug-delivery platform. Biomacromolecules 2013;14:4038-45.
  • 47. Hu Y, Zheng H, Huang W, Zhang C. A novel and efficient nicotine vaccine using nano-lipoplex as a delivery vehicle. Hum Vaccin Immunother 2014;10:64-72.
  • 48. Green G. Nicotine replacement therapy for smoking cessation. Am Fam Physician 2015;92:24
  • 49. Madhav NV, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: A review. J Control Release 2009;140:2-11.
  • 50. Surana AS. Chewing gum: A friendly oral mucosal drug delivery system. Int J Pharm Sci Rev Res 2010;4:68-71.
  • 51. Houtsmuller EJ, Fant RV, Eissenberg TE, Henningfield JE, Stitzer ML. Flavor improvement does not increase abuse liability of nicotine chewing gum. Pharmacol Biochem Behav 2002;72:559-68.
  • 52. Aslani A, Rafiei S. Design, formulation and evaluation of nicotine chewing gum. Adv Biomed Res 2012;1:57.
  • 53. Henningfield JE, Shiffman S, Ferguson SG, Gritz ER. Tobacco dependence and withdrawal: Science base, challenges and opportunities for pharmacotherapy. Pharmacol Ther 2009;123:1-16.
  • 54. Marsh HS, Dresler CM, Choi JH, Targett DA, Gamble ML, Strahs KR. Safety profile of a nicotine lozenge compared with that of nicotine gum in adult smokers with underlying medical conditions: A 12-week, randomized, open-label study. Clin Ther 2005;27:1571- 87.
  • 55. Lambrichts DPV, Boersema GSA, Tas B, Wu Z, Vrijland WW, Kleinrensink GJ, et al. Nicotine chewing gum for the prevention of postoperative ileus after colorectal surgery: a multicenter, double- blind, randomised, controlled pilot study. Int J Colorectal Dis 2017;32:1267-75.
  • 56. Nielsen HM, Rassing MR. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: Effect of pH and concentration. Eur J Pharm Sci 2002;16:151-7.
  • 57. Adrian CL, Olin HBD, Dalhoff K, Jacobsen J. In vivo human buccal permeability of nicotine. Int J Pharm 2006;311:196-202.
  • 58. Molander L, Lunell E. Pharmacokinetic investigation of a nicotine sublingual tablet. Eur J Clin Pharmacol 2001;56:813-9.
  • 59. Ìkinci G, Şenel S, Wilson CG, Şumnu M. Development of a buccal bioadhesive nicotine tablet formulation for smoking cessation. Int J Pharm 2004;277:173-8.
  • 60. Park CR, Munday DL. Development and evaluation of a biphasic buccal adhesive tablet for nicotine replacement therapy. Int J Pharm 2002;237:215-26.
  • 61. Park CR, Munday DL. Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug Dev Ind Pharm 2004;30:609-17.
  • 62. Kanjanabat S, Pongjanyakul T. Preparation and characterization of nicotine-magnesium aluminum silicate complex-loaded sodium alginate matrix tablets for buccal delivery. AAPS PharmSciTech 2011;12:683-92.
  • 63. Cilurzo F, Cupone IE, Minghetti P, Buratti S, Selmin F, Gennari CG, et al. Nicotine fast dissolving films made of maltodextrins: A feasibility study. AAPS PharmSciTech 2010;11:1511-7.
  • 64. Du D, Nides M, Borders J, Selmani A, Waverczak W. Comparison of nicotine oral soluble film and nicotine lozenge on efficacy in relief of smoking cue-provoked acute craving after a single dose of treatment in low dependence smokers. Psychopharmacology (Berl) 2014;231:4383-91.
  • 65. Du D, Borders J, Selmani A, Waverczak W. A Pilot Study to Investigate the Efficacy of Nicotine Oral Soluble Film, Lozenge and Gum in Relief of Acute Smoking Cue-provoked Craving for Cigarette in Low Dependence Smokers. J Smok Cessat 2015;10:87-95.
  • 66. Rao S, Song Y, Peddie F, Evans AM. A novel tri-layered buccal mucoadhesive patch for drug delivery: Assessment of nicotine delivery. J Pharm Pharmacol 2011;63:794-9.
  • 67. Okeke OC, Boateng JS. Nicotine stabilization in composite sodium alginate based wafers and films for nicotine replacement therapy. Carbohydr Polym 2017;155:78-88.
  • 68. Pongjanyakul T, Suksri H. Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids Surfaces B Biointerfaces 2009;74:103-13.
  • 69. Pongjanyakul T, Suksri H. Nicotine-loaded sodium alginate- magnesium aluminum silicate (SA-MAS) films: Importance of SA- MAS ratio. Carbohydr Polym 2010;80:1018-27.
  • 70. Kanjanakawinkul W, Rades T, Puttipipatkhachorn S, Pongjanyakul T. Nicotine-magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery. Mater Sci Eng C Mater Biol Appl 2013;33:1727-36.
  • 71. Boateng J, Okeke O. Evaluation of clay-functionalized wafers and films for nicotine replacement therapy via Buccal Mucosa. Pharmaceutics 2019;11:104.
  • 72. Bolliger CT, Van Biljon X, Axelsson A. A nicotine mouth spray for smoking cessation: A pilot study of preference, safety and efficacy. Respiration 2007;74:196-201.
  • 73. Kraiczi H, Hansson A, Perfekt R. Single-dose pharmacokinetics of nicotine when given with a Novel mouth spray for nicotine replacement therapy. Nicotine Tob Res 2011;13:1176-82.
  • 74. Tønnesen P, Lauri H, Perfekt R, Mann K, Batra A. Efficacy of a nicotine mouth spray in smoking cessation: A randomised, double- blind trial. Eur Respir J 2012;40:548-54.
  • 75. Caldwell BO, Adamson SJ, Crane J. Combination rapid-acting nicotine mouth spray and nicotine patch therapy in smoking cessation. Nicotine Tob Res 2014;16:1356-64.
  • 76. Ding Y, Nielsen KA, Nielsen BP, Bøje NW, Müller RH, Pyo SM. Lipid-drug-conjugate (LDC) solid lipid nanoparticles (SLN) for the delivery of nicotine to the oral cavity – Optimization of nicotine loading efficiency. Eur J Pharm Biopharm 2018;128:10-7.
  • 77. Kalouta K, Stie MB, Janfelt C, Chronakis IS, Jacobsen J, Mørck Nielsen H, et al. Electrospun α-Lactalbumin Nanofibers for Site- Specific and Fast-Onset Delivery of Nicotine in the Oral Cavity: An in Vitro, Ex Vivo, and Tissue Spatial Distribution Study. Mol Pharm 2020;17:4189-200.
  • 78. Shin SH, Thomas S, Raney SG, Ghosh P, Hammell DC, El-Kamary SS, et al. In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application. J Control Release 2018;270:76-88.
  • 79. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W. Characterization, in vitro release and permeation studies of nicotine transdermal patches prepared from deproteinized natural rubber latex blends. Chem Eng Res Des 2012;90:906-14.
  • 80. Brand RM, Guy RH. Iontophoresis of nicotine in vitro: pulsatile drug delivery across the skin? J Control Release 1995;33:285-92.
  • 81. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 2016;23:564-78.
  • 82. Olivier JC, Rabouan S, Couet W. In vitro comparative studies of two marketed transdermal nicotine delivery systems: Nicopatch and Nicorette. Int J Pharm 2003;252:133-40.
  • 83. DeVeaugh-Geiss AM, Chen LH, Kotler ML, Ramsay LR, Durcan MJ. Pharmacokinetic comparison of two nicotine transdermal systems, a 21-mg/24-hour patch and a 25-mg/16-hour patch: A randomized, open-label, single-dose, two-way crossover study in adult smokers. Clin Ther 2010;32:1140-8.
  • 84. Hatsukami D, Mooney M, Murphy S, LeSage M, Babb D, Hecht S. Effects of high dose transdermal nicotine replacement in cigarette smokers. Pharmacol Biochem Behav 2007;86:132-9.
  • 85. Schnoll RA, Wileyto EP, Lerman C. Extended duration therapy with transdermal nicotine may attenuate weight gain following smoking cessation. Addict Behav 2012;37:565-8.
  • 86. Hwang BY, Jung BH, Chung SJ, Lee MH, Shim CK. In vitro skin permeation of nicotine from proliposomes. J Control Release 1997;49:177-84.
  • 87. Davaran S, Rashidi MR, Khandaghi R, Hashemi M. Development of a novel prolonged-release nicotine transdermal patch. Pharmacol Res 2005;51:233-7.
  • 88. Değim T, F. Acartürk N. Çelebi, T. Değim, Z. Değim, T. Doğanay, S. Takka, F. Tırnaksız IA. Deriden emilim ve deriye uygulanan yarı katı preparatlar. Modern Farmasötik Teknoloji. Ankara: Türk Eczacılar Birliği Eczacılık Akademisi; 2009. https://e-kutuphane.teb.org.tr/ pdf/tebakademi/modern_farmasotk/20.pdf
  • 89. Sukphong D, Rojanaratha T, Srivarnitpoom M, Sriwichupong C, Ritthidej GC. Nicotine transdermal patch for smoking cessation using combination of hydrophilic and hydrophobic polymers as matrix film formers. Asian J Pharm Sci 2016;11:207-8.
  • 90. Li Q, Wan X, Liu C, Fang L. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive. Eur J Pharm Sci 2018;119:102-11.
  • 91. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Amnuaikit T, Ritthidej GC. Deproteinised natural rubber used as a controlling layer membrane in reservoir-type nicotine transdermal patches. Chem Eng Res Des 2013;91:520-9.
  • 92. Ruela ALM, Figueiredo EC, Pereira GR. Molecularly imprinted polymers as nicotine transdermal delivery systems. Chem Eng J 2014;248:1-8.
  • 93. Panda A, Sharma PK, Shivakumar HN, Repka MA, Murthy SN. Nicotine loaded dissolving microneedles for nicotine replacement therapy. J Drug Deliv Sci Technol 2021;61:102300.
  • 94. Wu J, Paudel KS, Strasinger C, Hammell D, Stinchcomb AL, Hinds BJ. Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc Natl Acad Sci U S A 2010;107:11698- 702.
  • 95. Paudel KS, Wu J, Hinds BJ, Stinchcomb AL. Programmable transdermal delivery of nicotine in hairless guinea pigs using carbon nanotube membrane pumps. J Pharm Sci 2012;101:3823-32.
  • 96. Hammann F, Kummer O, Guercioni S, Imanidis G, Drewe J. Time controlled pulsatile transdermal delivery of nicotine: A phase i feasibility trial in male smokers. J Control Release 2016;232:248-54.
  • 97. Gulati GK, Berger LR, Hinds BJ. A preclinical evaluation of a programmable CNT membrane device for transdermal nicotine delivery in hairless Guinea pigs. J Control Release 2019;293:135-43.
  • 98. Lemay S, Chouinard S, Blanchet P, Masson H, Soland V, Beuter A, et al. Lack of efficacy of a nicotine transdermal treatment on motor and cognitive deficits in Parkinson’s disease. Prog NeuroPsychopharmacol Biol Psychiatry 2004;28:31-9.
  • 99. Esmat IM, Kassim DY. Comparative study between transdermal nicotine and melatonin patches on postoperative pain relief after laparoscopic cholecystectomy, a double-blind, placebo-controlled trial. Egypt J Anaesth 2016;32:299-307.
  • 100. Illum L. Nasal drug delivery - Recent developments and future prospects. J Control Release 2012;161:254-63.
  • 101. Schneider NG, Lunell E, Olmstead RE, Fagerström KO. Clinical pharmacokinetics of nasal nicotine delivery. A review and comparison to other nicotine systems. Clin Pharmacokinet 1996;31:65-80.
  • 102. Jung BH, Chung BC, Chung SJ, Lee MH, Shim CK. Prolonged delivery of nicotine in rats via nasal administration of proliposomes. J Control Release 2000;66:73-9.
  • 103. Cheng YH, Watts P, Hinchcliffe M, Hotchkiss R, Nankervis R, Faraj NF, et al. Development of a novel nasal nicotine formulation comprising an optimal pulsatile and sustained plasma nicotine profile for smoking cessation. J Control Release 2002;79:243-54.
  • 104. Smith RC, Warner-Cohen J, Matute M, Butler E, Kelly E, Vaidhyanathaswamy S, et al. Effects of nicotine nasal spray on cognitive function in schizophrenia. Neuropsychopharmacology 2006;31:637-43.
  • 105. Yagoubian B, Akkara J, Afzali P, Alfi DM, Olson L, Conell-Price J, et al. Nicotine nasal spray as an adjuvant analgesic for third molar surgery. J Oral Maxillofac Surg 2011;69:1316-9.
  • 106. Patil JS, Sarasija S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India 2012;29:44-9.
  • 107. Wang H, George G, Bartlett S, Gao C, Islam N. Nicotine hydrogen tartrate loaded chitosan nanoparticles: Formulation, characterization and in vitro delivery from dry powder inhaler formulation. Eur J Pharm Biopharm 2017;113:118-31.
  • 108. Wang H, George G, Islam N. Nicotine-loaded chitosan nanoparticles for dry powder inhaler (DPI) formulations – Impact of nanoparticle surface charge on powder aerosolization. Adv Powder Technol 2018;29:3079-86.
  • 109. Wang H, Holgate J, Bartlett S, Islam N. Assessment of nicotine release from nicotine-loaded chitosan nanoparticles dry powder inhaler formulations via locomotor activity of C57BL/6 mice. Eur J Pharm Biopharm 2020;154:175-85.
APA ESENTÜRK-GÜZEL I, ALGIN YAPAR E, Sindhu R, Kaur H, KARA B (2022). Tobacco: Its Conventional and Modern Dosage Forms in Medication. , 655 - 665. 10.14235/bas.galenos.2021.6492
Chicago ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Sindhu Rakesh K,Kaur Harnoor,KARA BİLGE AHSEN Tobacco: Its Conventional and Modern Dosage Forms in Medication. (2022): 655 - 665. 10.14235/bas.galenos.2021.6492
MLA ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Sindhu Rakesh K,Kaur Harnoor,KARA BİLGE AHSEN Tobacco: Its Conventional and Modern Dosage Forms in Medication. , 2022, ss.655 - 665. 10.14235/bas.galenos.2021.6492
AMA ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Sindhu R,Kaur H,KARA B Tobacco: Its Conventional and Modern Dosage Forms in Medication. . 2022; 655 - 665. 10.14235/bas.galenos.2021.6492
Vancouver ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Sindhu R,Kaur H,KARA B Tobacco: Its Conventional and Modern Dosage Forms in Medication. . 2022; 655 - 665. 10.14235/bas.galenos.2021.6492
IEEE ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Sindhu R,Kaur H,KARA B "Tobacco: Its Conventional and Modern Dosage Forms in Medication." , ss.655 - 665, 2022. 10.14235/bas.galenos.2021.6492
ISNAD ESENTÜRK-GÜZEL, IMREN vd. "Tobacco: Its Conventional and Modern Dosage Forms in Medication". (2022), 655-665. https://doi.org/10.14235/bas.galenos.2021.6492
APA ESENTÜRK-GÜZEL I, ALGIN YAPAR E, Sindhu R, Kaur H, KARA B (2022). Tobacco: Its Conventional and Modern Dosage Forms in Medication. Bezmiâlem Science, 10(5), 655 - 665. 10.14235/bas.galenos.2021.6492
Chicago ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Sindhu Rakesh K,Kaur Harnoor,KARA BİLGE AHSEN Tobacco: Its Conventional and Modern Dosage Forms in Medication. Bezmiâlem Science 10, no.5 (2022): 655 - 665. 10.14235/bas.galenos.2021.6492
MLA ESENTÜRK-GÜZEL IMREN,ALGIN YAPAR Evren,Sindhu Rakesh K,Kaur Harnoor,KARA BİLGE AHSEN Tobacco: Its Conventional and Modern Dosage Forms in Medication. Bezmiâlem Science, vol.10, no.5, 2022, ss.655 - 665. 10.14235/bas.galenos.2021.6492
AMA ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Sindhu R,Kaur H,KARA B Tobacco: Its Conventional and Modern Dosage Forms in Medication. Bezmiâlem Science. 2022; 10(5): 655 - 665. 10.14235/bas.galenos.2021.6492
Vancouver ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Sindhu R,Kaur H,KARA B Tobacco: Its Conventional and Modern Dosage Forms in Medication. Bezmiâlem Science. 2022; 10(5): 655 - 665. 10.14235/bas.galenos.2021.6492
IEEE ESENTÜRK-GÜZEL I,ALGIN YAPAR E,Sindhu R,Kaur H,KARA B "Tobacco: Its Conventional and Modern Dosage Forms in Medication." Bezmiâlem Science, 10, ss.655 - 665, 2022. 10.14235/bas.galenos.2021.6492
ISNAD ESENTÜRK-GÜZEL, IMREN vd. "Tobacco: Its Conventional and Modern Dosage Forms in Medication". Bezmiâlem Science 10/5 (2022), 655-665. https://doi.org/10.14235/bas.galenos.2021.6492