Yıl: 2023 Cilt: 23 Sayı: 1 Sayfa Aralığı: 61 - 69 Metin Dili: İngilizce DOI: 10.5152/electrica.2022.21125 İndeks Tarihi: 23-05-2023

Design of Infant Incubator Analyzer

Öz:
Approximately 80% of newborn babies are placed in incubators in Turkey. In the incubator, the mother's uterus is simulated and the vital parameters of the newborns are maintained. The incubator provides a noiseless environment for babies with suitable temperatures and humidity. The complete functioning of the incubator is possible only if the incubators are kept under control by preventive maintenance. The purpose of this study is to design and develop a reliable incubator analyzer that ensures the sustainability of incubators. This study presents a detailed design of an analyzer that can be used to monitor the functional parameters of the incubator by means of three different sensors controlled by an AVR Atmega32 microcontroller unit and interfaced with a liquid-crystal display. In the analyzer, temperature, humidity, and noise measurements have been targeted. DHT11 sensor performed quite well with an average error ratio of 3.54% for air temperature measurements and 1.4% for humidity. Mattress temperature sensor (LM35) had an error ratio of 2%. The sound noise sensor was able to detect measurements with an error ratio of ±20 dB. The proposed design is a preliminary prototype that needs further optimization and testing. It is believed that design recommendations generated from this study will form the basis of similar designs in the future.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. H. Bansal, L. Mathew, and A. Gupta, “Controlling of temperature and Humidity for an infant incubator using microcontroller,” IJAREEIE, vol. 04, no. 6, pp. 4975–4982, 2015.
  • 2. E. Özdemdrcd, M. Yatak, F. Duran, and M. Canal, “Reliability assessments of infant incubator and the analyzer,” Gu J. Sci., vol. 27, no. 4, pp. 1169–1175, 2014.
  • 3. D. Ruscansky, D. Vecchione, R. Foley, S. Krishnan, and M. Zenouzi, Design a Low Cost Neonatal Incubator. Boston, USA: Electronics and Mechanical Department, Wentworth Institute of Technology.
  • 4. A. Fransson, H. Karlsson, and K. Nilsson, “Temperature variation in newborn babies: Importance of physical contact with the mother,” Arch. Dis Child Fetal Neonatal, vol. 90, no. 6, pp. 500–504, 2005.
  • 5. V. Dhatrak, R. Gholap, S. Patil, N. Bhaldar, and M. Mhetre, “Intelligent baby incubator using LabVIEW,” Sciences (ETETS), Trivandrum. 2nd International Conference On Emerging Trends in Engineering & Techno; 2014.
  • 6. Y. Erdem, S. Topuz, and N. Güneş, “Progress related to maternal and neonatal health in turkey,” J. Neonatal Biol., vol. 3, no. 2, pp. 2–6, 2013.
  • 7. J. M. R. Perez, F. R. Perez, S. Golombek, and A. Sola, “Comparative trial between neonatal intensive care incubator, neonatal laminar flow unit and radiant warmer,” Crimson Publ. Res. Ped. Neonatol., ” vol. 1, no. 1, Nov, 2017.
  • 8. M. İpek, and E. Özbek, “Bloodstream infections in a neonatal intensive care unit,” J. Clin. Anal. Med., vol. 7, no. 5, pp. 625–629, 2016.
  • 9. C. Soler, and A. Abbas, Prototyping a Closed Loop Control System for a Neonatal Incubator. Aachen: Helmohlotz - Institute for Biomedical Engineering , RWTH Aachen University; 2009.
  • 10. J. P. Baker, “The incubator and the medical discovery of the premature infant, ” J. Perinatol., vol. 20, no. 5, pp. 321–328, 2000. [CrossRef]
  • 11. R. Antonucci, A. Porcella, and V. Fanos, “The infant incubator in the neonatal intensive care unit: Unresolved issues and future developments,” J. Perinat. Med., vol. 37, no. 6, pp. 587–598, 2009. [CrossRef]
  • 12. R. Frischer, M. Penhaker, O. Krejcar, M. Kacerovsky, and A. Selamat, “Precise temperature measurement for increasing the survival of new-born babies in incubator environments,” Sensors (Basel), vol. 14, no. 12, pp. 23563–23580, 2014. [CrossRef]
  • 13. Neonatal Intensive Care Unit Clinical Guideline. Surrey: Ashford and St. Peter's Hospital; 2013.
  • 14. F. J. Agate, and W. A. Silverman, “The control of body temperature in the small new-born infant by low-energy infra-red radiation,” Pediatrics, vol. 31, no. 5, pp. 725–733, 1963. [CrossRef]
  • 15. K. S. Betts, “Road RAGE? The role of diesel particulate matter in lung inflammation,” Environ. Health Perspect., vol. 119, no. 3, pp. a132, 2011. [CrossRef]
  • 16. G. Demirel, and U. Dilmen, “Success of decreasing neonatal mortality in Turkey,” Med. J. Islamic. World. Acad. Sci. vol. 19, no. 4, pp. 161–164, 2011.
  • 17. E. N. Hey, and N. P. Maurice, “Effect of humidity on production and loss of heat in the new-born baby,” Arch. Dis. Child., vol. 43, no. 228, pp. 166–171, 1968. [CrossRef]
  • 18. A. Knutson, and W. Clark, Acceptable Noise Levels for Neonates in the Neonatal Intensive Care Unit [Phd thesis]. Washington: Washington University School of Medicine, 2013.
  • 19. Mde F. Nogueira, K. C. Di Piero, E. G. Ramos, M. N. De Souza, and M. V. Dutra, “Noise measurement in NICUs and incubators with new-borns a systematic literature review,” Rev. Lat.-Am. Enferm., vol. 19, no. 1, pp. 212–221, 2011. [CrossRef]
  • 20. Y. Chang, Y. Pan, Y. Lin, Y. Chang, and C. Lin, “A noise-sensor light alarm reduces noise in the new-born intensive care unit”, Am. J. Perinatol., vol. 23, no. 5, pp. 265-271, 2006.
  • 21. F. Ibrahim, J. Ding, M. Taib, and P. Babu, “Safty and performance compliance test of an infant incubator,” Stud. Conference on Research and Development, Shah Alam, Malaysia, 2002, pp. 35–39.
  • 22. Inspection and Preventive Maintenance System, 257941456–257940595. 1995.
  • 23. Medical Devices and Supply Industry. Republic of Turkey: Ministry of Economy.
  • 24. S. Barrett, and D. Pack, Atmel AVR Microcontroller Primer: Programming and Interfacing. Williston, USA: Morgan & Claypool, 2007.
  • 25. M. Suruth, and S. Suma, “Microcontroller based baby incubator using sensors”, IRJET, vol. 4, no. 3, 2017, pp. 1908–1910.
  • 26. D. Bouattoura, P. Villon, and G. Farges, “Dynamic programming approach for new-born's incubator humidity control, ” IEEE Trans. Bio Med. Eng., vol. 45, no. 1, pp. 48–55, 1998. [CrossRef]
APA Sallam A, SEZDI M (2023). Design of Infant Incubator Analyzer. , 61 - 69. 10.5152/electrica.2022.21125
Chicago Sallam Ahmed,SEZDI MANA Design of Infant Incubator Analyzer. (2023): 61 - 69. 10.5152/electrica.2022.21125
MLA Sallam Ahmed,SEZDI MANA Design of Infant Incubator Analyzer. , 2023, ss.61 - 69. 10.5152/electrica.2022.21125
AMA Sallam A,SEZDI M Design of Infant Incubator Analyzer. . 2023; 61 - 69. 10.5152/electrica.2022.21125
Vancouver Sallam A,SEZDI M Design of Infant Incubator Analyzer. . 2023; 61 - 69. 10.5152/electrica.2022.21125
IEEE Sallam A,SEZDI M "Design of Infant Incubator Analyzer." , ss.61 - 69, 2023. 10.5152/electrica.2022.21125
ISNAD Sallam, Ahmed - SEZDI, MANA. "Design of Infant Incubator Analyzer". (2023), 61-69. https://doi.org/10.5152/electrica.2022.21125
APA Sallam A, SEZDI M (2023). Design of Infant Incubator Analyzer. Electrica, 23(1), 61 - 69. 10.5152/electrica.2022.21125
Chicago Sallam Ahmed,SEZDI MANA Design of Infant Incubator Analyzer. Electrica 23, no.1 (2023): 61 - 69. 10.5152/electrica.2022.21125
MLA Sallam Ahmed,SEZDI MANA Design of Infant Incubator Analyzer. Electrica, vol.23, no.1, 2023, ss.61 - 69. 10.5152/electrica.2022.21125
AMA Sallam A,SEZDI M Design of Infant Incubator Analyzer. Electrica. 2023; 23(1): 61 - 69. 10.5152/electrica.2022.21125
Vancouver Sallam A,SEZDI M Design of Infant Incubator Analyzer. Electrica. 2023; 23(1): 61 - 69. 10.5152/electrica.2022.21125
IEEE Sallam A,SEZDI M "Design of Infant Incubator Analyzer." Electrica, 23, ss.61 - 69, 2023. 10.5152/electrica.2022.21125
ISNAD Sallam, Ahmed - SEZDI, MANA. "Design of Infant Incubator Analyzer". Electrica 23/1 (2023), 61-69. https://doi.org/10.5152/electrica.2022.21125